(Machine) Learning to Remove Pileup at the LHC

BSM/LHC/DM Journal Club

Eric M. Metodiev

Center for Theoretical Physics, Massachusetts Institute of Technology

Based on: Patrick T. Komiske, EMM, Benjamin Nachman, Matthew D. Schwartz, arXiv:1707.08600

September 8, 2017
Overview

- Pileup
- Jet Images
- Pileup Mitigation with Machine Learning (PUMML)
- Performance and Robustness
- What is being learned?
Pileup
Pileup

- Pileup problem in context
 - Presently: \(\sim 20\) pileup vertices per bunch crossing
 - Run 3: \(\sim 80\) pileup vertices per bunch crossing
 - HL-LHC: \(\sim 200\) pileup vertices per bunch crossing
- Pileup p_T is roughly uniform in pseudorapidity and azimuth.
- Charged particles with $p_T > 500\text{MeV}$ can be ID’d as pileup from tracking.
- The problem is thus to predict the neutral leading vertex (LV) p_T.
Mitigation Approaches

Pileup Per Particle Identification (PUPPI)
- Bertolini, Harris, Low, and Tran, arXiv:1407.6013
- Correct particle/calorimeter energies based on surrounding charged pileup distribution.

SoftKiller
- Cacciari, Salam, Soyez, arXiv:1407.0408
- Dynamically determined transverse momentum cut.

Jet Cleansing
- Rescaling subjet four-momenta using charged leading vertex/pileup information.

Used default parameters to give sense of performance.
How to input the information?
- The spirit is to organize all of our available local information.
- Have information on whether charged particles are pileup or not.
- Need low-level inputs.

What sort of architecture?
- Use tools from modern machine learning.
- Don’t necessarily have to go “deep”

What sort of loss function?
Jet Images

- Treat the detector as a camera and energy deposits as pixel intensities.

- Make use of the extensively developed computer vision technology, such as convolutional neural nets.
 - de Oliviera, Kagan, Mackey, Nachman, Schwartzman. arXiv:1511.05190
Modern ML in HEP

An overview of recent machine learning applications with jet images.

- **Classification**
 - W vs QCD jets. (de Oliviera, Kagan, Mackey, Nachman, Schwartzman. *arXiv:1511.05190*)
 - Top vs QCD jets. (Kasieczka, Plehn, Russell, Schell. *arXiv:1701.08784*)
 - Quark vs Gluon jets. (Komiske, EMM, Schwartz. *arXiv:1612.01551*)
 - And more...

- **Generation**

- **Regression**
 - This work.

Our Model

- **Inputs:** three-channel RGB “pileup image”
 - red = p_T of all neutrals
 - green = p_T of charged PU
 - blue = p_T of charged LV

- **Output:** neutral image
 - output = p_T of neutral LV
Our Study

Process

- Leading vertex: 500GeV scalar to dijets with Pythia8
- \(R = 0.4 \) anti-\(k_T \) jets in \(|\eta| < 2 \) with \(p_T > 100 \text{GeV} \).
- Pileup: NPU=140 Poissonian of soft QCD events overlaid.

Image parameters:

- Charged jet image pixel resolution: \(\Delta \eta \times \Delta \phi = 0.025 \times 0.025 \)
- Neutral jet image pixel resolution: \(\Delta \eta \times \Delta \phi = 0.1 \times 0.1 \)
- Jet image size 0.9 \times 0.9
- Leading vertex/pileup information for charged particles with \(p_T > 500 \text{MeV} \)
Architecture

What sort of neural network layers should we use?

- **Dense:** Units connected to every input pixel with different weights
- **Locally connected:** Units connected to local input patches with different weights
- **Convolutional:** Units connected to local input patches with weight sharing
Architecture

- Architecture: Two convolutional layers
 - 6×6 filter sizes
 - 10 filters per layer
 - Only 4711 parameters

- Architecture is *local*:
 - Pileup removal of a pixel depends only on the information in a window around it
 - Can apply the trained model at the event-level, jet level, or on any specified region
PUMML Framework

- Inputs to NN
- Leading vertex charged
- Pileup charged
- Total neutral
- Leading vertex neutral

10 filters x2
Subtracted Jets

An example event with pileup and subtracted with each method.

Loss function: Should we treat all p_T errors equally or penalize hard/soft errors more?

$$\ell = \left\langle \log \left(\frac{p_T^{(\text{pred})} + \bar{p}}{p_T^{(\text{true})} + \bar{p}} \right)^2 \right\rangle,$$

with $\bar{p} \to 0$ favoring soft pixels and $\bar{p} \to \infty$ favors all p_T equally.
Subtracted Observables

Distributions before and after subtraction of jet p_T and dijet mass
Subtracted Observables

Distributions before and after subtraction of jet mass and N_{95}.
Subtracted Observables

Distributions before and after subtraction of two energy correlation functions.
Study robustness to pileup by training and testing with different NPU.

Study robustness to the process by training and testing with different m_ϕ.
What is being learned?

- Train a single 12×12 filter and inspect it.
- Pixel-wise, PUMML learns: $p_{T, \text{PUMML}}^{N, LV} \approx p_{T}^{N, \text{tot}} - \beta p_{T}^{C, PU}$
- This is of the same parametric form as Linear Cleansing!

\[
p_{T, \text{Linear Cleansing}}^{N, LV} = p_{T}^{N, \text{tot}} + (1 - \frac{1}{\gamma_0}) p_{T}^{C, PU}
\]
What is being learned?

\[p_{T, \text{PUMML}}^{N,LV} \approx p_{T}^{N,tot} - \beta p_{T}^{C,PU} \]

- Robust as NPU → 0 despite training on \(\langle \text{NPU} \rangle = 140 \).
- Can we understand PUMML’s \(\beta \)? It depends on your loss function:

\[
\ell = |\langle p_{T, \text{True}}^{N,LV} \rangle - \langle p_{T, \text{Pred}}^{N,LV} \rangle| \quad \rightarrow \quad \beta^* = \frac{\langle p_{T}^{N,PU} \rangle}{\langle p_{T}^{C,PU} \rangle}
\]

\[
\ell = \langle (p_{T, \text{True}}^{N,LV} - p_{T, \text{Pred}}^{N,LV})^2 \rangle \quad \rightarrow \quad \beta^* = \frac{\langle p_{T}^{N,PU} p_{T}^{C,PU} \rangle}{\langle (p_{T}^{C,PU})^2 \rangle}.
\]

- Thinking about what PUMML learned suggested including charged/neutral PU correlations in the subtractor.
- This perspective could extend Jet Cleansing in interesting ways.
What is being learned?

PUMML Parameter Space

- Linear Cleansing
- Non-Linear Cleansing

PUPPI

Number of Filters

Number of Layers

Eric M. Metodiev (MIT)
Learning from Data

- Training from simulation risks mis-modelling issues

- Prefer to train on data rather than simulation
 - Data overlay approach using minimum bias and zero-bias events already used by experimental groups in other contexts.
 - Promising for training PUMML directly with data for the relevant application.
Concluding Remarks

- We have developed an ML framework that successfully organizes all of the available local information to directly learn to mitigate pileup.

- Can use tools from modern machine learning without going “deep”.

- Thinking about what the machine is learning may teach us something.

- Pileup mitigation can be a good proving ground for modern machine learning techniques in high energy physics.
Thank You!