Analyzing Jet Substructure with Energy Flow

Elementary Particle Physics Journal Club

Eric M. Metodiev Center for Theoretical Physics Massachusetts Institute of Technology

Joint work with Patrick Komiske and Jesse Thaler

[1712.07124] [1810.05165] [19xx.xxxx] April 26, 2019

Jets from the Standard Model

++ = Mass from QCD Radiation

Slide by Jesse Thaler

Infrared (IR) safety – observable is unchanged under addition of a soft particle:

$$S($$
 $) = S($

Collinear (C) safety – observable is unchanged under collinear splitting of a particle:

IRC safety guarantees that the soft and collinear divergences of a QFT cancel at each order in perturbation theory (KLN theorem)

Divergences in QCD splitting function:

$$dP_{i \to ig} \simeq \frac{2\alpha_s}{\pi} C_i \frac{d\theta}{\theta} \frac{dz}{z} \qquad C_q = C_F = 4/3$$

$$C_g = C_A = 3$$

IRC-safe observables probe hard structure while being insensitive to low energy or small angle modifications

Eric M. Metodiev, MIT

Outline

Energy Flow Polynomials A basis of jet substructure observables

Energy Flow Moments Tensor moments of the radiation pattern

Energy Flow Networks *ML architecture designed to learn from events* Outline

Energy Flow Polynomials A basis of jet substructure observables

Energy Flow Moments Tensor moments of the radiation pattern

Energy Flow Networks *ML architecture designed to learn from events*

Expanding an Arbitrary IRC-safe Observable

Arbitrary IRC-safe observable: $S(p_1^{\mu}, ..., p_M^{\mu})$ [1712.07124] • Energy expansion: Approximate *S* with polynomials of z_{ij} • IR safety: *S* is unchanged under addition of soft particle • C safety: *S* is unchanged under collinear splitting of a particle • Relabeling symmetry: Particle index is arbitrary Energy correlator parametrized by angular function f $\sum_{i=1}^{M} ... \sum_{i=1}^{M} z_{i_1} ... z_{i_N} f(\hat{p}_{i_1}, ..., \hat{p}_{i_N})$ [F.Tkachov, hep-ph/9601308]

Expanding an Arbitrary IRC-safe Observable

Arbitrary IRC-safe observable: $S(p_1^{\mu}, ..., p_M^{\mu})$

- Energy expansion: Approximate S with polynomials of z_{i_i}
 - IR safety: S is unchanged under addition of soft particle
 - C safety: S is unchanged under collinear splitting of a particle
 - Relabeling symmetry: Particle index is arbitrary

Energy correlator parametrized by angular function *f*

[F. Tkachov, <u>hep-ph/9601308</u>]

Energy correlators linearly span IRC-safe observables

- Angular expansion: Approximate f with polynomials in θ_{ij}
- Simplify: Identify unique analytic structure that emerge

Expanding an Arbitrary IRC-safe Observable

Arbitrary IRC-safe observable: $S(p_1^{\mu}, ..., p_M^{\mu})$

- Energy expansion: Approximate S with polynomials of z_{i_i}
 - IR safety: S is unchanged under addition of soft particle
 - C safety: S is unchanged under collinear splitting of a particle
 - Relabeling symmetry: Particle index is arbitrary

Energy correlator parametrized by angular function *f*

[F. Tkachov, <u>hep-ph/9601308</u>]

Energy correlators linearly span IRC-safe observables

- Angular expansion: Approximate f with polynomials in θ_{ij}
- Simplify: Identify unique analytic structure that emerge

• • • •

Obtain linear spanning basis of Energy Flow Polynomials, "EFPs":

$$S \simeq \sum_{g \in G} s_G \text{EFP}_G, \qquad \text{EFP}_G \equiv \sum_{i_1=1}^M \dots \sum_{i_N=1}^M z_{i_1} \dots z_{i_N} \prod_{(k,\ell) \in G} \theta_{i_k i_\ell}$$

Organization of the basis

EFPs are truncated by angular degree *d*, the order of the angular expansion.

Finite number at each order in dAll prime EFPs up to d=5 ————

Exactly 1000 EFPs up to degree d=7

Image files for all of the prime EFP multigraphs up to d = 7 are available <u>here</u>.

Familiar Jet Substructure Observables as EFPs

Scaled Jet Mass:

$$\frac{m_J^2}{p_{TJ}^2} = \sum_{i_1=1}^M \sum_{i_2=1}^M z_{i_1} z_{i_2} (\cosh \Delta y_{i_1 i_2} - \cos \Delta \phi_{i_1 i_2}) = \frac{1}{2} \left(\sum_{i_1=1}^M z_{i_1} z_{i_2} (\cosh \Delta y_{i_1 i_2} - \cos \Delta \phi_{i_1 i_2}) - \frac{1}{2} \right) + \cdots$$

Jet Angularities: $\lambda^{(\alpha)} = \sum_{i}^{M} z_{i} \theta_{i}^{\alpha}$

Energy Correlation Functions(ECFs):
$$e_N^{(\beta)} = \sum_{i_1=1}^M \sum_{i_2=1}^M \cdots \sum_{i_N=1}^M z_{i_1} z_{i_2} \cdots z_{i_N} \prod_{k < l \in \{1, \dots, N\}} \theta_{i_k i_l}^{\beta}$$

[A. Larkoski, G. Salam, and J. Thaler, 1305.0007]

and many more...

Jet Tagging Performance – Quark vs. Gluon Jets

ROC curves for quark vs. gluon jet tagging

Linear classification with EFPs is comparable to modern machine learning techniques

Additional EFP Tagging Plots – Quark vs. Gluon Jets

High d EFPs are important Convergence by $d \le 7$

High N EFPs are important

Top Tagging Community Comparison

Top jet VS. QCD jet

Community comparison of top tagging methods:

	AUC	Acc	#Param
CNN [16]	0.981	0.930	610k
ResNeXt [30]	0.984	0.936	1.46M
TopoDNN [18]	0.972	0.916	59k
Multi-body N -subjettiness 6 [24]	0.979	0.922	57k
Multi-body N -subjettiness 8 [24]	0.981	0.929	58k
TreeNiN [43]	0.982	0.933	34k
P-CNN	0.980	0.930	348k
ParticleNet [47]	0.985	0.938	498k
LBN [19]	0.981	0.931	705k
LoLa [22]	0.980	0.929	127k
Energy Flow Polynomials [21]	0.980	0.932	1k
Energy Flow Network [23]	0.979	0.927	82k
Particle Flow Network [23]	0.982	0.932	82k
GoaT	0.985	0.939	35k

[1902.09914]

Outline

Energy Flow Polynomials A basis of jet substructure observables

Energy Flow Moments Tensor moments of the radiation pattern

Energy Flow Networks ML architecture designed to learn from events

Take:
$$\theta_{ij} = n_i^{\mu} n_{j \mu} = (1 - \hat{n}_i \cdot \hat{n}_j)$$

Take: $\theta_{ij} = n_i^{\mu} n_{j \mu}$

[See also J. Donogue, F. Low, S-Y. Pi, 1979]

Take: $\theta_{ij} = n_i^{\mu} n_{j \mu}$

[See also J. Donogue, F. Low, S-Y. Pi, 1979] $= \sum_{i_1=1}^{M} \sum_{i_2=1}^{M} \sum_{i_3=1}^{M} \frac{E_{i_1}E_{i_2}}{E_{i_1}E_{i_2}} \frac{E_{i_3}\theta_{i_1i_2}^2}{e_{i_1i_3}\theta_{i_2i_3}} \theta_{i_2i_3}$ $= I^{\mu\nu\rho\sigma} I^{\tau}_{\mu\nu} I_{\rho\sigma\tau}$

	Loopless, Leafless Multigraphs		
	Edges d	Connected	Total
	1	0	0
Counting symmetric kinematic polynomials:	2	1	1
	3	2	2
THE ON TIME ENCYCLOPEDIA	4	4	5
THE ON-LINE ENCYCLOPEDIA	5	9	11
OF INTECED SEQUENCES®	6	26	34
OF INTEGER SEQUENCES	7	68	87
	8	217	279
Asymptotic number of completely symmetric polynomials of degree n up to momentum	9	718	897
conservation in the limit as the number of particles increases.	10	${\bf 2}{\bf 553}$	3129
1, 0, 1, 2, 5, 11, 34, 87, 279 (list; graph; refs; listen; history; text; internal format)	11	$\mathbf{9574}$	11458
OFFSET 0,4	12	38005	44576
COMMENTS The values for n >= 6 are only conjectural.	13	157306	181071
LINKS <u>Table of n, a(n) for n=08.</u>	14	$\boldsymbol{679682}$	770237
R. H. Boels, On the field theory expansion of superstring five point amplitudes,	15	$\mathbf{3047699}$	3407332
Nuclear Physics B, Vol. 876, No. 1 (2013), 215-233.	16	14150278	15641159

A22691

Outline

Energy Flow Polynomials A basis of jet substructure observables

Energy Flow Moments Tensor moments of the radiation pattern

Energy Flow Networks ML architecture designed to learn from events

Towards Machine Learning

A generic IRC-safe observable O can be written via moments as:

$$O = F\left(\sum_{i=1}^{M} \mathbf{E}_{i} n_{i}^{\mu_{1}} n_{i}^{\mu_{2}} \cdots n_{i}^{\mu_{\nu}}\right)$$

Idea: Let angular structure be generic function:

Energy Flow Network IRC safe

$$\text{EFN} = F\left(\sum_{i=1}^{M} \mathbf{E}_i \, \overrightarrow{\Phi}(\hat{n}_i)\right)$$

[P. Komiske, EMM, J. Thaler, 1810.05165]

$$\overrightarrow{\Phi} : R^2 \to R^\ell F : R^\ell \to R$$

Approximate $\overrightarrow{\Phi}$ and F with neural networks to learn an observable.

Particle Flow Network IRC unsafe

Many observables are easily interpreted in EFN and PFN language

$$PFN = F\left(\sum_{i=1}^{M} \overrightarrow{\Phi}(E_i, n_i^{\mu}, \cdots)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{M} \overrightarrow{\Phi}(E_i, n_i^{\mu}, \cdots)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} \left(\sum_{i=1}^{\mu} (e_i, e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1 \\ k \neq 1}} \left(\sum_{i=1}^{\mu} (e_i, e_i)\right) \xrightarrow{q_i \neq 1}_{\substack{k \neq 1}} \left(\sum_$$

100

Deep Sets

All permutation symmetric functions have an additivity similar to EFMs

Deep Sets

1703.06114

Manzil Zaheer^{1,2}, Satwik Kottur¹, Siamak Ravanbhakhsh¹, Barnabás Póczos¹, Ruslan Salakhutdinov¹, Alexander J Smola^{1,2} ¹ Carnegie Mellon University ² Amazon Web Services

Theorem 7 Let $f : [0,1]^M \to \mathbb{R}$ be a permutation invariant continuous function iff it has the representation

$$f(x_1, \dots, x_M) = \rho\left(\sum_{m=1}^M \phi(x_m)\right) \tag{18}$$

Proof sketch: Stone-Weierstrass theorem with elementary symmetric polynomials

Point Cloud

Point Cloud: "A set of points in space." - Wikipedia

Eric M. Metodiev, MIT

A frame from a Luminar LIDAR system

Point Cloud

Point Cloud: "A set of points in space." - Wikipedia

[See also H. Qu, L. Gouskos, 1902.08570]

An LHC event from the CMS Detector

Eric M. Metodiev, MIT

Analyzing Jet Substructure with Energy Flow

Strategies to Process Jets

Classification Performance – Quark vs. Gluon Jets

PFN-ID compares favorably to other architectures and observables

EFN Latent Dimension Sweep – Quark vs. Gluon Jets

PFN-ID: Full particle flavor info $(\pi^{\pm}, K^{\pm}, p, \overline{p}, n, \overline{n}, \gamma, K_L, e^{\pm}, \mu^{\pm})$

PFN-Ex: Experimentally accessible info $(h^{\pm,0},\gamma,e^{\pm},\mu^{\pm})$

PFN-Ch: Particle charge info

PFN: Four momentum information

EFN: IRC-safe latent space

Performance saturates as latent dimension increases

IRC-unsafe information helpful

Adding particle type information helpful

What is being learned?

$$\operatorname{EFN}\left(\{p_1^{\mu}, \dots, p_M^{\mu}\}\right) = F\left(\sum_{i=1}^{M} \mathbf{E}_i \, \overrightarrow{\Phi}(\widehat{n}_i)\right) \qquad \qquad \widehat{n}_i = (y_i, \phi_i)$$
Manifestly IRC-safe latent space

Calorimeter Images as EFN Filters

Radiation Moments as EFN Filters

Translated Azimuthal Angle ϕ

What is being learned?

Learned EFN Filters

Translated Rapidity y

Simultaneous Visualization Strategy

Analyzing Jet Substructure with Energy Flow

Translated Rapidity y

Translated Azimuthal Angle ϕ

Translated Rapidity y

Eric M. Metodiev, MIT

Emissions from quark or gluon are distributed according to:

$$dP_{i \to ig} \simeq \frac{2\alpha_s C_i}{\pi} \frac{d\theta}{\theta} \frac{dz}{z}$$

Uniform pixelization in emission plane implies:

$$\frac{d\theta}{\theta}d\varphi = \theta^{-2}dy \, d\phi$$
$$\ln\frac{A}{\pi R^2} = 2\ln\frac{\theta}{R}$$

 $\ell = 2$ latent space dimension has radially symmetric filters:

$$\mathcal{O}_1 = \sum_{i=1}^M z_i \Phi_1(\theta_i) \qquad \qquad \mathcal{O}_2 = \sum_{i=1}^M z_i \Phi_2(\theta_i)$$

 $\ell = 2$ latent space dimension has radially symmetric filters:

Take radial slices to obtain envelope

Fit functions of the following forms:

$$A_{r_0} = \sum_{i} z_i e^{-\theta_i^2/r_0^2}, \qquad B_{r_1,\beta} = \sum_{i} z_i \ln(1 + \beta(\theta_i - r_1)) \Theta(\theta_i - r_1),$$

A and B separate collinear and wide-angle regions of phase space, unlike traditional angularities which mix them

Can also visualize F in the two-dimensional $(\mathcal{O}_1, \mathcal{O}_2)$ phase space

Learned

Extract analytic form for F as distance from a point:

$$C(A, B) = (A - a_0)^2 + (B - b_0)^2$$

Can also visualize F in the two-dimensional $(\mathcal{O}_1, \mathcal{O}_2)$ phase space

Learned

Extract analytic form for F as distance from a point:

$$C(A, B) = (A - a_0)^2 + (B - b_0)^2$$

Closed-Form

Extracted C, A, B do a good job of reproducing the learned $\mathcal{O}_1, \mathcal{O}_2, F$

Benchmarking New Analytic Observables

Extracted C(A, B) performs nearly as well as EFN_2

Multivariate combination (BDT) of three other angularities does not do as well

Successfully reverse engineered what the machine learned

Outline

Energy Flow Polynomials A basis of jet substructure observables

Energy Flow Moments Tensor moments of the radiation pattern

Energy Flow Networks *ML architecture designed to learn from events*

The End

Thank you!

Extra Slides

Connection with the Stress-Energy Operator

Progress has been made in computing correlations of $\hat{\epsilon}(\hat{n}, v)$ in conformal field theory [D. Hofman and J. Maldecena, 0803.1467]

IRC-safe observables are built out of energy correlators:

$$C_{f} = \sum_{i_{1}=1}^{M} \cdots \sum_{i_{N}=1}^{M} \sum_{i_{1}}^{\text{Rigid energy structure}} \sum_{i_{N}=1}^{M} \sum_{i_{1}}^{\text{Rigid energy structure}} \sum_{i_{N}=1}^{M} f(\hat{p}_{i_{1}}, \cdots, \hat{p}_{i_{N}})$$
Arbitrary angular function f

F. Tkachov, hep-ph/9601308

Multigraph/EFP Correspondence

Computational Complexity of EFPs

- Like other energy correlators, EFPs are naively $\mathcal{O}(M^N)$
- Factorability of summand in EFP formula can speed up computation

$$1 \stackrel{2}{\bullet} 3 \stackrel{4}{\bullet} 5 = \left(\sum_{i_1=1}^M \sum_{i_1=1}^M \sum_{i_3=1}^M z_{i_1} z_{i_2} z_{i_3} \theta_{i_1 i_2}^2 \theta_{i_2 i_3}\right) \left(\sum_{i_4=1}^M \sum_{i_5=1}^M z_{i_4} z_{i_5} \theta_{i_4 i_5}^4\right)$$

$$\begin{array}{l} \textbf{Composite EFPs are products of prime EFPs} \\ \bullet \bullet \bullet \bullet & = \underbrace{\sum_{i_1=1}^{M} \sum_{i_2=1}^{M} \sum_{i_3=1}^{M} \sum_{i_4=1}^{M} \sum_{i_5=1}^{M} \sum_{i_6=1}^{M} \sum_{i_7=1}^{M} \sum_{i_8=1}^{M} z_{i_1} z_{i_2} z_{i_3} z_{i_4} z_{i_5} z_{i_6} z_{i_7} z_{i_8} \theta_{i_1 i_2} \theta_{i_1 i_3} \theta_{i_1 i_4} \theta_{i_1 i_5} \theta_{i_1 i_6} \theta_{i_1 i_7} \theta_{i_1 i_8}}{\mathcal{O}(M^8)} \\ & = \underbrace{\sum_{i_1=1}^{M} z_{i_1} \left(\sum_{i_2=1}^{M} z_{i_2} \theta_{i_1 i_2} \right)^7}_{\mathcal{O}(M^2)} \\ \end{array}$$

$$\begin{array}{c} \textbf{Other algebraic simplifications are also possible by choosing parentheses wisely} \\ \end{array}$$

Energy Flow Networks

[P. Komiske, EMM, J. Thaler, 1810.05165]

Many observables are easily interpreted in EFN language

Eric M. Metodiev, MIT

Familiar Jet Substructure Observables as EFNs or PFNs

$$\operatorname{EFN}\left(\{p_1^{\mu},\ldots,p_M^{\mu}\}\right) = F\left(\sum_{i=1}^M z_i \Phi(\hat{p}_i)\right)$$

Manifestly IRC-safe latent space

$$\mathrm{PFN}\left(\{p_1^\mu,\ldots,p_M^\mu\}
ight)=F\left(\sum_{i=1}^M\Phi(p_i^\mu)
ight)$$
Fully general latent space

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		$\mathbf{Map}\Phi$	Function F
Mass	m	p^{μ}	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Multiplicity	M	1	F(x) = x
Track Mass	m_{track}	$p^{\mu}\mathbb{I}_{\mathrm{track}}$	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Track Multiplicity	M_{track}	$\mathbb{I}_{ ext{track}}$	F(x) = x
Jet Charge [69]	\mathcal{Q}_{κ}	$(p_T, Q p_T^\kappa)$	$F(x,y) = y/x^{\kappa}$
Eventropy [71]	$z\ln z$	$(p_T, p_T \ln p_T)$	$F(x,y) = y/x - \ln x$
Momentum Dispersion [90]	p_T^D	(p_T, p_T^2)	$F(x,y) = \sqrt{y/x^2}$
C parameter [91]	C	$ \hspace{0.1 cm} (ec{p} ,ec{p}\otimesec{p}/ ec{p})$	$F(x, Y) = \frac{3}{2x^2} [(\operatorname{Tr} Y)^2 - \operatorname{Tr} Y^2]$

Many observables are easily interpreted in EFN language