Weak Supervision in High Dimensions

Machine Learning for Jet Physics Workshop, 2017

Eric M. Metodiev
Center for Theoretical Physics
Massachusetts Institute of Technology

Work with Patrick T. Komiske, Francesco Rubbo, Benjamin Nachman, and Matthew D. Schwartz

December 13, 2017
Why learn from data?

Weak Supervision in HEP

Lessons from High Dimensions
Simulation vs. Data

Quark/Gluon Discrimination

Using two features: width and ntrk.

Signal (Q) vs. Background (G) likelihood ratio

Mixed Samples

Data does not have pure labels, but does have mixed samples!

Some caveats apply. See e.g. P. Gras, et al., arXiv: 1704.03878

\[p_{Ma}(x) = f_a \ p_S(x) + (1 - f_a) \ p_B(x) \]

Fractions of quark and gluon jets studied in detail in:
J. Gallicchio and M.D. Schwartz, arXiv: 1104.1175
Mixed Samples

Data does not have pure labels, but does have mixed samples!

Some caveats apply. See e.g. P. Gras, et al., arXiv: 1704.03878

\[p_{Ma}(x) = f_a \ p_S(x) + (1 - f_a) \ p_B(x) \]

Criteria to use Weak Supervision:

Sample Independence: The same signal and background in all the mixtures.

Different Purities: \(f_a \neq f_b \) for some \(a \) and \(b \).

Known fractions: The fractions \(f_a \) are known.
Why learn from data?

Weak Supervision in HEP

Lessons from High Dimensions
Learning from Label Proportions (LLP) (LoLiProp?)

\[\mathcal{L}_{LLP} = \sum_a \left(f_a, \frac{1}{N_a} \sum_{i=1}^{N_a} h(x) \right) \]

\[\ell_{MSW}, \ell_{CE}, \ldots \]

Classification Without Labels (CWoLa, “koala”)

[EMM, B. Nachman, and J. Thaler, arXiv: 1708.02949]
See also: [G. Blanchard, M. Flaska, G. Handy, S. Pozzi, and C. Scott, arXiv:1303.1208]

No label proportions needed during training!

Smoothly connected to the fully supervised case as $f_1, f_2 \to 0,1$

Note: Need small test sets with known signal fractions to determine the ROC.

Q/G WS with 5 inputs works

[EMM, B. Nachman, and J. Thaler, arXiv: 1708.02949]
Why learn from data?

Weak Supervision in HEP

Lessons from High Dimensions
Convolutional Net for QG

CNN as in:

P. Komiske, E. Metodiev, M.D. Schwartz, arXiv:1612.01551

$33 \times 33 = 1089$ inputs,
$2R=0.8$ size in (η, ϕ)

Only used pT-channel images
Defaults

Jet Generation

\[Z + q/g \]

Pythia 8.226, \(\sqrt{s} = 13 \text{ TeV} \)

R=0.4 anti-kT central jets

\(p_T \) in [250 GeV, 275 GeV]

Artifical q/g mixtures

CNN Training

Keras and TensorFlow

300k/50k/50k train/test/val data

Mixed sample fractions \(f_1 = 0.2 \) and \(f_2 = 0.8 \)

Batch size 400 for CWoLa and 4k for LLP

ELU activation and cross-entropy loss functions

Training until validation accuracy failed to improve for 10 epochs

Repeat each training 10x for statistics
Training on mixed samples

Q/G weak supervision with jet images works!
Lesson should be true for complex models more generally.
What about naturally mixed samples?

Z + jet:
\[f_q = 0.88 \]

Mixed Sample 1

Dijets:
\[f_q = 0.37 \]

Mixed Sample 2

Restrict to artificially mixed samples to have fine control of the fractions.
Purity and Number of Data

Two mixed samples: $f_1, 1 - f_1$

Purity/Data plot can characterize tradeoffs in a weak learning method
Batch Size and Training Time

Batch size
Usual parameter for CWoLa

Need large batch size for LLP
Batch Size > 1000

$$\ell_{\text{LLP}} = \sum_a \ell \left(f_a, \frac{1}{N_a} \sum_{i=1}^{N_a} h(x) \right)$$

PRELIMINARY
Loss and Activation Functions

LLP:

ELU activations help significantly over ReLU activations.

Weak crossentropy loss helps over weak MSE loss.

Include the softmax in the loss (not model) to avoid underflow.
Conclusions

Weak supervision methods work for training complex classifiers.

Have several different methods that utilize different information.
Which to use depends on the specific application.

LLP:
- Requires specialized loss functions and care
- Utilizes fraction information
- Can make use of multiple fractions

CWoLa:
- Can use with any fully supervised technique
- Does not require fraction information
- Only works with two mixed samples
The End

Why learn from data?

Weak Supervision in HEP

Lessons from High Dimensions
Multiple Mixture Fractions

PRELIMINARY

LLP

Number of Bundles

AUC