Disentangling Jet Categories at Colliders

Machine Learning for Jet Physics Workshop

Eric M. Metodiev
Center for Theoretical Physics
Massachusetts Institute of Technology

Joint work with Patrick Komiske and Jesse Thaler

November 16, 2018

[1802.00008] [1809.01140]
Jet-by-jet classification
“What type of jet is this?”

Run: 302347
Event: 753275626
2016-06-18 18:41:48 CEST
Disentangling Jet Categories

“What types of jets are these?”

Unsupervised Learning?
Data-driven categories?
Disentangling Distributions

This talk: Towards experimentally measuring separate quark and gluon distributions

Why?
- Better understand QCD jets
- Data-driven quark/gluon taggers
- Well-defined jet categories & labels
- Parton shower tuning?
- Better extraction of α_s?

Think distribution-level, not per-jet level

Don't need a perfect tagger!

Don't need MC fractions or templates!

PYTHIA 8.230, $\sqrt{s} = 14$ TeV
$R = 0.4, p_T \in [500, 550]$ GeV

- Z+jet
- Dijets
- Quark
- Gluon
- Topic 1
- Topic 2

Probability Density

Jet Mass m [GeV]
Disentangling Jet Categories

Eric M. Metodiev, MIT

Classification: Jet Tagging

Regression: Pileup Removal

Clustering: Jet Finding

Topic Modeling: This talk.

Our Goal: Find “jet types” that best explain the data

Anomaly Detection: ML New Physics Searches
Topic modeling

Treat text documents as statistical mixtures of “topics” – distributions over words.

Can you extract the underlying “topics” given only the documents? Yes*

* Terms and conditions apply

<table>
<thead>
<tr>
<th>Topics</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene</td>
<td>0.04</td>
</tr>
<tr>
<td>dna</td>
<td>0.02</td>
</tr>
<tr>
<td>genetic</td>
<td>0.01</td>
</tr>
<tr>
<td>life</td>
<td>0.02</td>
</tr>
<tr>
<td>evolve</td>
<td>0.01</td>
</tr>
<tr>
<td>organism</td>
<td>0.01</td>
</tr>
<tr>
<td>brain</td>
<td>0.04</td>
</tr>
<tr>
<td>neuron</td>
<td>0.02</td>
</tr>
<tr>
<td>nerve</td>
<td>0.01</td>
</tr>
<tr>
<td>data</td>
<td>0.02</td>
</tr>
<tr>
<td>number</td>
<td>0.02</td>
</tr>
<tr>
<td>computer</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the genome meeting here,” two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today’s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn’t be enough. Although the numbers don’t match precisely, those predictions

SCIENCE • VOL. 272 • 24 MAY 1996

Disentangling Jet Categories

Eric M. Metodiev, MIT
Topic modeling

Treat text documents as statistical mixtures of “topics” – distributions over words.

Can you extract the underlying “topics” given only the documents?

Yes, as long as the topics are “mutually irreducible” (M.I.):

Each topic must have an “anchor” word that doesn’t appear in any other topics.

A quick example:

The term “energy conservation” appears in Physics papers and in Climate Science papers.

However, only Physics papers contain “Noether’s Theorem” and only Climate Science papers contain “Kyoto Protocol”. These are the anchor words.

Hence Physics and Climate Science are mutually irreducible topics.
Let’s model physicists as random jargon emitters.
An Example

Listen to the jargon emitted from two different conferences.

\[
\frac{N_{\text{Conf. A}}^{\text{"ROOT"}}}{N_{\text{Conf. B}}^{\text{"ROOT"}}} = \frac{f_{\text{Conf. A}}^{\text{Expt.}}}{f_{\text{Conf. B}}^{\text{Expt.}}}
\]

\[
\frac{N_{\text{Conf. A}}^{\text{"Trivial"}}}{N_{\text{Conf. B}}^{\text{"Trivial"}}} = \frac{1 - f_{\text{Conf. A}}^{\text{Expt.}}}{1 - f_{\text{Conf. B}}^{\text{Expt.}}}
\]
An Example

Disentangle theorist and experimentalist vocabularies from the jargon at conferences.

Deep Learning for Jet Tagging?

IRC safety!

Deep Learning for Jet Tagging?

Trivial. Use ROOT.

Deep Learning for Jet Tagging?
Collider data as mixtures of jet types

A mathematical correspondence between topic models and jet distributions.
Collider data as mixtures of jet types

This is an unfamiliar way to think about machine learning and jet physics.

We are going to use observables and model outputs not as classifiers, but as feature spaces to extract mixture fractions.
Disentangling Jet Categories

“What types of jets are these?”

Take your favorite jet algorithm

Anti-kT R=0.4

Consider multiple jet samples

Sample A: Z + jet
Sample B: dijets

Select a substructure feature space

Constituent Multiplicity
Jet Mass
Soft Drop Multiplicity
Model Output

Goal: Find the underlying categories which explain the variation in substructure among the samples.
Disentangling Jet Categories

“What types of jets are these?”

Take your favorite jet algorithm

Anti-\(k_T\) \(R=0.4\)

Consider multiple jet samples

Sample A: \(Z +\) jet

Sample B: dijets

Select a substructure feature space

Constituent Multiplicity

Jet Mass

Soft Drop Multiplicity

Model Output

Goal: Find the underlying categories which explain the variation in substructure among the samples.
Demixing the mixtures

\[p_A(x) = f_A^q \ p\text{quark}(x) + (1 - f_A^q) \ p\text{gluon}(x) \]

\[p_B(x) = f_B^q \ p\text{quark}(x) + (1 - f_B^q) \ p\text{gluon}(x) \]

\[\kappa_{BA} \equiv \min_x \frac{p_B(x)}{p_A(x)} = \frac{f_B^q}{f_A^q} \]

\[\kappa_{AB} \equiv \min_x \frac{p_A(x)}{p_B(x)} = \frac{1 - f_A^q}{1 - f_B^q} \]
Demixing the mixtures

\[p_A(x) = f_A^q p_{\text{quark}}(x) + (1 - f_A^q) p_{\text{gluon}}(x)\]
\[p_B(x) = f_B^q p_{\text{quark}}(x) + (1 - f_B^q) p_{\text{gluon}}(x)\]

With reducibility factors \(\kappa_{BA}\) and \(\kappa_{AB}\), solve for the quark and gluon fractions and distributions:

\[f_A^q = \frac{1 - \kappa_{AB}}{1 - \kappa_{AB} \kappa_{BA}}\]
\[f_B^q = \frac{\kappa_{BA}(1 - \kappa_{AB})}{1 - \kappa_{AB} \kappa_{BA}}\]

\[p_{\text{quark}}(x) = \frac{p_A(x) - \kappa_{AB} p_B(x)}{1 - \kappa_{AB}}\]
\[p_{\text{gluon}}(x) = \frac{p_B(x) - \kappa_{BA} p_A(x)}{1 - \kappa_{BA}}\]
Exploring substructure feature spaces

Why restrict ourselves to multiplicity? It works, but we can explore this choice. We can also use a trained classifier (with CWoLa) as an observable in its own right.

Observables

- **Multiplicity** n_{const}
 Number of particles in the jet

- **Soft Drop Multiplicity** n_{SD}
 Probes number of perturbative emissions

- **Image Activity** N_{95}
 Number of pixels with 95% of jet p_T

- **N-subjettiness** $\tau_2^{(\beta=1)}$
 Probes how multi-pronged the jet is

- **Jet Mass** m
 Mass of the total jet four-vector

- **Width** w
 Probes the girth of the jet

Models

- **PFN-ID**
 Full particle-level information

- **PFN**
 Full four-momentum information

- **EFN**
 Full IRC-safe information

- **EFPs**
 Full IRC-safe information, linearly

- **CNN**
 Trained on two-channel jet images

- **DNN**
 Trained on an N-subjettiness basis

See Patrick’s talk!

[P.T. Komiske, EMM, J. Thaler, 1810.05165]
Extracting quark and gluon fractions

With the topics procedure, the quark and gluon fractions of the samples can be obtained.
Extracting quark and gluon distributions

The extracted quark and gluon fractions can be used to obtain any quark/gluon distributions.
(Self-)calibrating quark and gluon classifiers

The extracted quark and gluon fractions can calibrate any data-driven quark/gluon classifiers.
Jet topics from perturbative QCD

Topic modeling for jets can be understood and calculated from perturbative QCD.

Jet mass (like many shape observables) exhibits **Casimir scaling** at Leading Logarithmic accuracy:

\[\Sigma_g(m) = \Sigma_q(m)^{\frac{C_A}{C_F}} \]

Jet topics can be understood and calculated from perturbative QCD.

Soft Drop Multiplicity (like many count observables) exhibits **Poisson scaling** at Leading Logarithmic accuracy:

\[p_q(n) = \text{Pois}(n; C_F \lambda), \]
\[p_g(n) = \text{Pois}(n; C_A \lambda). \]

\[\kappa_{qg}^{\text{Cas.}} = 0 \quad \kappa_{gq}^{\text{Cas.}} = 0 \]

\[\kappa_{qg}^{\text{Pois.}} = \epsilon^{\lambda(C_F - C_A)} \]

See back-up slides for more.
An operational definition of quark and gluon jets

Quark and Gluon Jet Definition (Operational): Given two samples A and B of QCD jets at a fixed p_T obtained by a suitable jet-finding procedure, taking A to be “quark-enriched” compared to B, and a jet substructure feature space x, quark and gluon jet distributions are defined to be:

$$p_{\text{quark}}(x) \equiv \frac{p_A(x)-\kappa_{AB} p_B(x)}{1-\kappa_{AB}}$$

$$p_{\text{gluon}}(x) \equiv \frac{p_B(x)-\kappa_{BA} p_A(x)}{1-\kappa_{BA}}$$

Well-defined and operational statement in terms of hadronic cross sections.

Not a per-jet flavor label, but rather an aggregate distribution label.

Jets themselves are operationally defined.
Sample dependence?

How does “sample dependence” manifest in this language?

Pairs of samples define quark and gluon.
Different pairs of samples may yield different flavor definitions.

Comparing definitions from different pairs of samples (dijets, Z+jet, gamma+jet, …) in data could probe how universal quark and gluon are. Can grooming improve this?

There are ways to quantify how “explainable” a new sample C is by quark and gluon:

$$\max (f^q + f^g) \quad \text{s.t. } \quad p_c(x) = f^q p_q(x) + f^g p_g(x) + (1 - f^q - f^g) p_{\text{other}}(x)$$

Thus topic modeling techniques could be an interesting avenue to explore issues of sample dependence directly in data.
Summary

Jet categories can be extracted (or defined!) using topic modeling ideas.

In our two-category case, this allows quark and gluon jet distributions to be measured separately without fractions or templates:

\[
p_{\text{quark}}(x) \equiv \frac{p_A(x) - \kappa_{AB} p_B(x)}{1 - \kappa_{AB}} \quad p_{\text{gluon}}(x) \equiv \frac{p_B(x) - \kappa_{BA} p_A(x)}{1 - \kappa_{BA}}
\]

\[
\kappa_{AB} \equiv \min_x \frac{p_A(x)}{p_B(x)} \quad \kappa_{BA} \equiv \min_x \frac{p_B(x)}{p_A(x)}
\]

These methods are theoretically tractable and operate directly in terms of hadronic cross sections.

Can we do this for more categories?
- Need to specify (using experts or ML) a pure phase space region for each category.
- Need different mixtures of the different categories.
- Something new to think about!

Trivial.
The End
Thank you!
Extra Slides
Disentangling Jet Categories

A/B Likelihood Ratio

\[p_{\text{sample } A}(x) = f^q_A \, p_{\text{quark}}(x) + (1 - f^q_A) \, p_{\text{gluon}}(x) \]

\[p_{\text{sample } B}(x) = f^q_B \, p_{\text{quark}}(x) + (1 - f^q_B) \, p_{\text{gluon}}(x) \]

\[L_{A/B}(x) \equiv \frac{p_A(x)}{p_B(x)} = \frac{f^q_A \, L_{\text{quark}}(x) + (1 - f^q_A)}{f^q_B \, L_{\text{quark}}(x) + (1 - f^q_B)} \]

The A/B and quark/gluon likelihood ratios are monotonic!

Classification without labels (CWoLa)

• Optimal A/B classifier is the optimal quark/gluon classifier.
• Use machine learning to approximate A/B likelihood ratio.

Jet Topics

• “Mutually irreducibility” means the bounds saturate
• Obtain the maxima and minima of the A/B likelihood ratio.
• Solve for the quark/gluon fractions and distributions.
Jet topics from QCD: Casimir scaling

Jet mass (and many substructure observables) exhibits Casimir scaling at Leading Logarithmic accuracy:

\[\Sigma_g(m) = \Sigma_q(m) \frac{C_A}{C_F} \]

The quark/gluon reducibility factors at LL for any Casimir scaling observable are:

\[
\kappa_{gq} = \min_m \frac{p_g(m)}{p_q(m)} = \min_m \frac{\Sigma'_g(m)}{\Sigma'_q(m)} = \frac{C_A}{C_F} \min_m \Sigma'_q(m) \frac{C_A}{C_F}^{-1} = 0
\]

\[
\kappa_{qg} = \min_m \frac{p_q(m)}{p_g(m)} = \min_m \frac{\Sigma'_q(m)}{\Sigma'_g(m)} = \frac{C_F}{C_A} \min_m \Sigma'_q(m) 1 - \frac{C_A}{C_F} = \frac{C_F}{C_A} = \frac{4}{9}
\]
Jet topics from QCD: Poisson scaling

Soft Drop Multiplicity (and other count observables) exhibits Poisson scaling at Leading Logarithmic accuracy:

\[p_q(n) = \text{Pois}(n; C_F \lambda), \quad p_g(n) = \text{Pois}(n; C_A \lambda). \]

The quark/gluon reducibility factors at LL for any Poisson scaling observable are:

\[
\kappa_{gq} = \min_n \frac{p_g(n)}{p_q(n)} = \min_n \frac{(C_A \lambda)^n e^{-C_A \lambda}}{(C_F \lambda)^n e^{-C_F \lambda}} = e^{\lambda(C_F - C_A)} \min_n \left(\frac{C_A}{C_F} \right)^n = e^{\lambda(C_F - C_A)}
\]

\[
\kappa_{qg} = \min_n \frac{p_q(n)}{p_g(n)} = \min_n \frac{(C_F \lambda)^n e^{-C_F \lambda}}{(C_A \lambda)^n e^{-C_A \lambda}} = e^{\lambda(C_A - C_F)} \min_n \left(\frac{C_F}{C_A} \right)^n = 0
\]
Casimir scaling of mass and width is observed (gray).

Count observables come closer to saturating the bounds (black).

Lower bound easier to extract than upper. (i.e. Gluons are easy!)

Models CWoLa-trained. Fully data-driven.

Well-behaved likelihoods close to S/(S+B) expectation.

All different models manifest the same bounds.
Parton-labeled sample dependence in Pythia