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Jets in Theory in Practice in Theory in Practice...

e need to master: =

. ; - \ Fixed Order + Resummation
%W Final state radiation

20+

2 . Present, studied,
Soft radiation from other jets :
. and fairly well understood_
* Hadronization . in e*e- 140 | —

* Single scale Aqcp - e . |
* Universal power corrections

* Shape-function models ) 1

/ Initial state radiation h .
.0 0.1 0.2 0.3 0.4

* Soft radiation into jets understood ‘
e Collinear radiation understood with beam functions

Slide from overview talk by Matthew Schwartz at 2017 ML for Jets workshop at LBNL



https://indico.physics.lbl.gov/indico/event/546/contribution/14/material/slides/0.pdf
https://indico.physics.lbl.gov/indico/event/546/overview

Jet Tasks We'll Talk About

Jet Tagging: How can we distinguish a quark jet vs.a gluon jet? A W jet vs.a QCD jet?

q%vs.g%

Pileup Mitigation: Can we decontaminate the jet radiation from soft, diffuse pileup?

Data vs. Simulation: Do we really need simulations to provide labeled training data? Or
are there ways to train algorithms directly on the (unlabeled) data?

Simulation
. oimu

VS.

L
0.05 . 0.15
Track Width

Measuring Jet Observables: Do we need to perfectly classify quark and gluon jets to
separately measure quark and gluon jet observable distributions?

I Mixed Jet Sample N

Mixed Jet Sample |
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Quark Jet [ X XX ]
> 0000 5
I | XXX

Jet Fractions Mixed Data Histogram

Gluon Jet
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Machine Learning
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Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks 12



Machine Learning in High Energy Physics
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1511.05190 1702.00748 Jet Topics
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more complete review


https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/0802.1189
https://arxiv.org/abs/1802.00008
https://arxiv.org/abs/1712.07124
https://arxiv.org/abs/1511.05190
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https://arxiv.org/abs/1712.07124
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1704.08249
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Quark vs. Gluon Jet Tagging

[PTK, EMM, M.D. Schwartz, 1612.01551]

For many BSM processes:
Quark = Signal
Gluon = Background

Quarlk charge: Cr = 4/3
Gluon charge: C4 = 3

_—)

anti-k1

K
PUMML T

EFPs & IRC-safe
Observbales

CaloGAN

Clustering CIA
USVVEE Regression .

- Generation

Autoencoders?

PCA?
Unsupervised
Supervised Learning

Learnin -
° Machine
Classification L earn | n g Topic

Modeling

Dimensionality
Reduction

Top Tagging

Jet Images RNNs
and CNNs

Jet Topics

Reinforcement

Learning

Gluons radiate more than quarks and are “wider”

Inherently difficult problem for conventional taggers (both are one-pronged jets)

Machine learning to the rescue!
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https://arxiv.org/abs/1612.01551

/;""

Tradltlonal Approach

Machlne Learning Approach

Think about physics

A\ 4

Think about inputs

y

Design observables

Design model

—

Run simulations

Take best observables

Algorithm learns
best observables

Use on data
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Representing a Jet %

List of Particles

Jet Images Clustering Trees Energy Flow
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Jet Images

Quarks
Center on patch of the pseudorapidity- . : )
azimuth plane containing a jet
- &
Treat energy/transverse momentum
deposits in calorimeter as pixel intensities
Gluons

Additional input channels possible:
Red: p; of charged particles _
Green: p; of neutral particles F - ot
Blue: charged particle multiplicity

Jet images are sparse Gluons wider than quarks

17



Convolutional Neural Networks

Standard ML method for )
image classification O~

Feature Learning Classification

Learns filters which extract features

Encodes translation invariance Natural to use with jet images
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Convolutional Net for QG

U]

)

]
[Ty
(1]

33 x 33 image = 1089 inputs
2Rx2R=0.8x0.8in (v, ®)

......
A

pre-process

dense layer

quark jet

(m
N

gluon jet
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Quantifying a Classifier

Receiver Operating Characteristic (ROC) curve:
True negative rate of the classifier at different true positive rates

ROC curve for Jet Mass
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Quark Signal Efficiency
Figure from 1211.7038

Area Under the ROC Curve (AUC) captures the classifier performance in a number.
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https://arxiv.org/abs/1211.7038

Classification Performance

Gluon Jet Rejection

Significance Improvement

1.0
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CNN outperforms expert observables!

Gluon Jet Rejection

Significance Improvement

Multi-channel images help at high pr
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Pileup Mitigation with Machine Learning (PUMML)

[PTK, EMM, B. Nachman, M.D. Schwartz, 1707.08600]

Pileup comes from additional
interaction vertices

Soft and uniform (on average) noise

Want to remove pileup to be sensitive
to high energy effects

PUMML is first application of
regression in particle physics

PUMML

CaloGAN

Generation

Unsupervised
) : Dimensionali
Supervised ’ Learning Reducticm'ty

Machine

Learning

Learning

Modeling

Reinforcement
Learning

CMS Experiment at the LHC, CERN
Data recorded: 2016-Sep-08 08:30:28.497920 GMT
N

Run_/Event/LS: 7/88711%7



https://arxiv.org/abs/1707.08600

Pileup Mitigation with Machine Learning (PUMML)

Total neutral

Leading vertex neutral

Inputs to NN e

10 filters x2

24



Average PUMML Jet Image Inputs

Lower neutral
resolution

Higher charged
resolution

Azimuthal Angle ¢

Azimuthal Angle ¢

Neutral Total pr

Pseudorapidity n

Charged Leading Vertex pr

Pseudorapidity n

Azimuthal Angle ¢

Azimuthal Angle ¢

Charged Pileup pr

Pseudorapidity n

Neutral Leading Vertex pr

Pseudorapidity n

Pileup is uniform

PUMML tries to
predict this

25



Example Pileup Removal Comparisons

Leading Vertex with Pileup PUMML PUPPI SoftKiller




Comparison of Pileup Removal Methods

PUMML compares favorably to other existing pileup mitigation methods!

Cross-section (normalized)

Cross-section (normalized)

Jet Mass (GeV)
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Back to Observables

Angularities
Jet mass g

Subjet Count

Multiplicit
N-subjettiness LY

Geometric Moments

Energy Correlation Functions



What is IRC Safety!?

Infrared (IR) safety — observable is unchanged under addition of a soft particle:

S({pt, - py}) = lim S({py, . Ph €DM41)) VDMt

e—0

Collinear (C) safety — observable is unchanged under collinear splitting of a particle:

S({pl, .o} = lim S({pf, ... A — Dl Apy}), VA€ [01]

e—>0

A necessary and sufficient condition for soft/collinear divergences of a QFT
to cancel at each order in perturbation theory (KLN theorem)

Divergences can be seen in QCD splitting function:

2, dOdz C,=Cr=4/3
(6666\ AP, =~ 7TsCi - g =Cr=4/
Cy=Cp=3

.
>

IRC-safe observables probe high energy structure while being insensitive to low
energy modifications

29



Energy Flow

N\
N\

At the heart is the Energy Flow Operator:

Energy Flow to infinity

) v
£(7,v) = lim ?iTOL(t, m?)

in the 71 direction
at velocity v

[N. Sveshnikov and F. Tkachov, hep-ph/9512370]
[V. Mateu, I.W. Stewart, and |. Thaler, arXiv:1209.3781]

Progress has been made in computing correlations of (7, v) in conformal field theory

[D. Hofman and J. Maldecena, 0803.1467]

IRC-safe observables are built out of energy correlators:

[E. Tkachov, hep-ph/9601308]

Rigid energy structure  Arbitrary angular function f

Cf—EZ zEE iy f By Biy)

l1—1 l2—1

30


https://arxiv.org/abs/hep-ph/9601308
https://arxiv.org/abs/hep-ph/9512370
https://arxiv.org/abs/1209.3781
https://arxiv.org/abs/0803.1467

Energy Flow Polynomials (EFPs)

[PTK, EMM, |. Thaler, 1712.07124]

Energy Fraction Pairwise Angular Distance
B B
— E; 2D; Piy \2
€+€ VAR / , 91] = <—l J“)
Yk Ek EiEj
Pbrj 2 2 -
1 L] P —] LI B — ' L] 2
\ | Hadronic: z; = S o 0;; = (Ayl] + Aqbu)

In equations: EFP; = z z 2 Zi, Zj, " Zjy, _[ 0:.i,
/4 4 4 L

4
multigraph 1=1i,=1 iy=1 (k,DeG
| | | | |
| [ | I
In words: Correlator of Energies  and Angles
Sum over all N-tuples of Product of the N One 6;, ;, for each
particle in the event energy fractions edge in (k,]) €G
In pictures:
‘. — Zij — Qikil
J k [
3 M
1 2 2
(e'g') . . . ' lezlzzl3Zl4 Qiliz Qizig 9i3i40i2i4
l1=1 l2 l3=1 l4, 1
4

(any index labelling works)
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https://arxiv.org/abs/1712.07124

Degree Connected Multigraphs

Organization of the basis [

EFPs linearly span all IRC-safe " O /\

observables!
= AAAL

EFPs are truncated by angular degree d, @
the order of the angular expansion. /\ é /\ <> /I\

& A. o™
Online Encyclopedia of Integer Sequences (OEIS)

s o e i i | AAAAG A
# of EFPs of degree d | K\XAAK\QK\{\QA

A076864 # of connected multigraphs with d edges

# of prime EFPs of degree d | X%W}?T{n\mﬁm
l i

QU
Il
[

Image files for all of the prime EFP multigraphs up to d = 7 are available here.

Exactly 1000 EFPs up to degree d=7!

32


https://oeis.org/A050535
https://oeis.org/A076864
https://github.com/pkomiske/EnergyFlow/tree/images/graphs

Jet Substructure Observables as EFPs

Scaled Jet Mass: z Z 2,7, (cosh Ay ;. — cos Ad; ;)
pT'] 1.1 112
Jet Angularities: N © = 3 >
g . A(a) :Zzieia A = _E +§
i
[C. Berger, T. Kucs, and G. Sterman, hep-ph/0303051]
) _ [S. Ellis, et al., arXiv:10010014]
AT = [A. Larkoski, |. Thaler, and V. Waalewijn, arXiv:1408.3122]
. . ] M
Energy Correlation Functions(ECFs): B _ Z Z Z o o5
N 120 " Ikil
i1=1i,=1 iy=1 k<lE{1,---,N}

[A. Larkoski, G. Salam, and ]. Thaler, arXiv:1305.0007]

eP = P = elP) =

33
and many more...


https://arxiv.org/abs/1305.0007
https://arxiv.org/abs/hep-ph/0303051
https://arxiv.org/abs/1001.0014
https://arxiv.org/abs/1408.3122

Jet Tagging Comparison

ROC curves for W jet vs. QCD jet tagging
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S
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8 W vs. QCD

o Pythia 8.226, /s = 13 TeV
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5] EFP 8=05,d<7

E 109 E
{1 =—— EFPs, Lin. ——— Nsubs, Lin.
] EFPs, DNN Nsubs, DNN
T gray CNN ~ =eree color CNN

1071 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

W Jet Efficiency

(Linear classification with EFPs) ~ (MML) for efficiency > 0.5!

N-subjettiness: 1011.2268,  N-subjettiness basis: 1704.08249, NN Review: |709.04464



https://arxiv.org/abs/1011.2268
https://arxiv.org/abs/1704.08249
https://arxiv.org/abs/1709.04464

Jet Tagging Comparison

ROC curves for quark vs. gluon tagging and top tagging

10° Tg

101 5

Inverse Gluon Jet Mistag Rate

Quark vs. Gluon
Pythia 8.226, /s = 13 TeV
R = 0.4, pr € [500,550] GeV
EFP 8 =0.5,d <7
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1.0

Inverse QCD Jet Mistag Rate
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0.0 0.2 0.4 0.6 0.8

Top Jet Efficiency

(Linear classification with EFPs) ~ (MML) for efficiency > 0.5!
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Simulation vs. Data

CaloGAN
Clustering

Generation

In physics, we usually don’t have access Unsupervised
. . i
to labelled training data. o (RN T

Learning

Dimensionality
Reduction

“Machine

Learning

If we knew which jets were quark and
gluon jets... we wouldn’t need a tagger!

Reinforcement
Learning

In collider physics, we usually rely on (imperfect) simulations to provide labelled examples.

DELPHES

fast simulation

Modern machine learning exploits subtle correlations.The simulations do not fully capture
all of the complex correlations. Is this a fundamental obstacle to all ML in Physics?
37



Simulation vs. Data

Quark/Gluon Discrimination

Using two features:Width and Number of tracks.
Signal (Q) vs. Background (G) likelihood ratio

[ATLAS Collaboration, arXiv: 1405.6583]
Simulation
f T T T T | T T T T I 13 T T T I T
£18

|IIII[II|III|

i H T I
0 0.05 0.1 0.15
Track Width

q/(9+g)

L

Data
18F L
16F 0.9
141 0.8
- 0.7
12
0.6
10
0.5
0.4
0.3
0.2
0.1

0.15
Track Width

0 0.05 0.1

Important differences between simulation and data even for simple observables! 32

q/(q+g)

L =


https://arxiv.org/abs/1405.6583

B - 4
¥y
VU
¥ —

Traditional Approach Machine Learning Approach

Think about physics Think about inputs
Design observables Design model
\/ =<

S
\
—————— ) (R -
Run simulations I Train on data?
7 -~
¥

Algorithm learns

Take best observables
best observables

Use on data
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“Physics ML”

This is relatively new territory for Machine Learning.

In “Usual ML”: Automate a task that is possible but time consuming for humans
(e.g. cat jet vs dog jet).

VS.

In “Physics ML”: Automate a task that is impossible for humans (e.g. quark jet vs gluon jet)

VS.



Mixed Samples

Key: Data does not have pure labels, but does have mixed samples!

Some caveats apply. See e.g. P. Gras, et al., arXiv: 1704.03878

Mixed Sample 1 Mixed Sample 2

. J L J
0.010
Fractions of quark and gluon jets studied in detail in:
J. Gallicchio and M.D. Schwartz, arXiv: 1104.1175
100%-
80%-
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40%-

Fraction where ALL Jets are Quark

L\ - W) o
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—
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https://arxiv.org/abs/1704.03878
https://arxiv.org/abs/1104.1175

Mixed Samples

Data does not have pure labels, but does have mixed samples!
Some caveats apply. See e.g. P. Gras, et al., arXiv: 1704.03878

Mixed Sample 1 Mixed Sample 2
{

®| ©®6
@@% Pu,(X) = fa ps(x) + (1 = fo) pp(x)
®| | ©

Sample Independence:The same signal and background in all the mixtures.
Different Purities: f, # f; for some a and b.

(Known Fractions):The fractions f, are known.


https://arxiv.org/abs/1704.03878

Weak Supervision

ML Umbrella term for any classification framework using partial label information.

Collection of supervision models.

Model References Description

Full-supervision [9.24.34,43] For each example, complete class information is provided.

Unsupervision [24] No class information is provided with the examples.

Semi-supervision (5] Part of the examples are provided fully supervised. The rest are unsupervised.

Positive-unlabeled [4,10,21,32] Part of the examples are provided fully supervised, all of them with the same categorization.
The rest are unsupervised.

Candidate labels [7.13,16] For each example, a set of class labels is provided. In this set, the class label(s) that compose
the real categorization of the example are included.

Probabilistic labels [18] For each example, the probability of belonging to each class label is provided. This probability
distribution is expected to assign high probability to the real label(s).

Incomplete [3.33,42] For each example, a subset of the labels that compose its real categorization is provided (SIML
or MIML, Table 1).

Noisy labels [2,44] For each example, complete class information is provided, although its correctness is not
guaranteed.

Crowd [30,40] For each example, many different non-expert annotators provide their (noisy) categorization.

Mutual label constraints [19,20,31] For each group of examples, an explicit relationship between their class labels is provided
(e.g., all the examples have the same categorization).

Candidate labeling vectors [22] For each group of examples, a set of labeling vectors (including the real one) is provided. A
labeling vector provides a class label for each examples of a group.

Label proportions [15,25,28] For each group of examples, the proportion of examples belonging to each class label is

provided.

J. Herndndez-Gonzdlez et al. / Pattern Recognition Letters 69 (2016) 49-55

No exact weak supervision framework for the physics (mixture) use-case.

An opportunity to develop new ML tools for the job!
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Learning from Label Proportions (LLP) (LoLiProp)

[L. Dery, et al., arXiv: 1702.00414]

Mixed Sample 1

Try to match the signal fractions in aggregate

Mixed Sample 2

Oe®CO®G | | ©OCO®
OPCOG | | @OG®G
OOCG®G | | ©OC®®
OPCOG | | @®CO®
@GOG | | ©CC®G®

\ﬁ

"/

Classifier

fLp = Zf far

|

'gMSW, '£CE, )

Gluon Jet efficiency
o & |

0.1

1 Z h U'Pl.:
N, . (x;)
i=1

Q/G LLP with 3 inputs works

l { [
—— Fully supervised NN, AUC=0.79
—— Weakly supervised NN, AUC=0.79

n, AUC=0.76
w, AUC=0.78

f0, AUC=0.77

1 l |

Quark Jet efficiency

0.4 0.5 0.6 0.7 0.8
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https://arxiv.org/abs/1702.00414

‘ '.‘ ’ Classification Without Labels (CVWola, “koala™)

[EMM, B. Nachman, and J. Thaler, arXiv: 1708.02949] Classify mixed samples from each other

[T. Cohen, M. Freytsis, and B. Ostdiek, arXiv: 1706.09451]
[PTK, EMM, B. Nachman, and M.D. Schwartz, arXiv: [801.10158]

See also: [G. Blanchard, M. Flaska, G. Handy, S. Pozzi, and C. Scott, arXiv:1303.1208]

Mixed Sample 1 Mixed Sample 2

O®O®G
OOOO®G
OeO®®
OOO®G
Gl6]O]6J6)

0 1

Classifier

No label proportions needed during training!

Smoothly connected to the fully supervised case as f;, f, = 0,1

Note: Need small test sets with known signal fractions to determine the ROC.

Q/G WS with 5 inputs works
10—~

Gluon Background Rejection

o
oo
T

$:
(=2}
T

=1
=~
T

Dense Net
= w. CWoLa

Multiplicity — , + _ g 0.2

ot pp— H —qq/gg
B Mess Pythia 8.183
Pr V5 =13 TeV
LHA mpy = 500 GeV
OO l l l l
0.0 0.2 0.4 0.6 0.8 1.0
Quark Signal Efficiency
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https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1706.09451
https://arxiv.org/pdf/1303.1208.pdf
https://arxiv.org/abs/1801.10158

‘ ’.‘ ’ Classification Without Labels (CVWola, “koala™)

Why does CWola work?

O®OO®O | | ©OGCOG
OPOPG | | @OG®G
OeeG®G | | ©OG®®
OPOOG | | ©@GGOG
®eeOG | | ©CCG®®

Classifier

Neyman-Pearson Lemma:
There is an optimal binary
classifier: the likelihood ratio.

ps(x)
pp(x)

Ls/s (x) =

The mixed-sample likelihood ratio is related to the
signal/background likelihood ratio by:

pm,  fips+ (A —fipg  filssp + (1 —f1)

L — — — .
Ma/Mz pm, f2ps+ (A —f)pg  falsp + (1 —f2)

This is a monotonic rescaling of the signal/background
likelihood ratio!

Therefore Mixture | vs. Mixture 2 and Signal vs.
Background define the same classifier. They have the
same ROC curves.



[} ’ Learning to Classify from Impure Samples

\ [PTK, EMM, B. Nachman, and M.D. Schwartz, arXiv: 1801.10158]

CWola and LLP have been shown to work for simple architectures and small inputs.

Can these weak supervision methods be used for real deep learning applications in
collider physics? Are they ready for the big leagues?

To answer this question, we did our
quark/gluon tagging with jet images using only
mixtures of quarks and gluons — no labels.

pre-process

dense layer

’ WH: =

max-pooling

Short answer: # CWola generalizes very well
LLP needs tuning, but it works

~ quark jet
s e

-

dodoooonbb

gluon jet

Potential to train on datal!

X3
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7
@‘.‘ ’ Purity and Number of Data

\

Two mixed samples: f;,1 — f;

OCIOICIONMRCICIOIONC,
OPOOG | | @OG®G
OGO | | ©CC®®
OPOPG | | @GCO®
®eCOG | | ©CCG®®

Purity/Data plot can characterize
tradeoffs in a weak learning method

CWola performs near full
supervision if the samples are

relatively pure.

LLP lags behind but still achieves
good classification performance.

o

|

better

AUC

0.87

0.86

0.85

0.84

0.83

0.82

0.81

0.80

0.79

Full Supervision

/

-

i

- /
/

=

’ ol

—— y* CWoLa

kT

® LLP

B

?‘ﬁﬁs 5

-1

[ _-E--F-
— £/ =00
— f1=0.1
— 1 =02
— £/1=03
— f,=04

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Number of Training Samples
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7
@'.‘ ¥ Batch Size and Training Time
\

2000
We. c?xplc?red hyperparameters, .
training times, and other lessons L 1750
o YA =
from using the methods in practice. g| """ o=
- - 1500
Bl 0851
- 1250 =
0.84 - g
& =
2 o - 1000 fo
Batch size ; e 3
0.82 - " A
As usual for CWola i
0.81 - 4 - 500
Need large batch size for LLP — — @ CWola - 250
Batch Size > 1000 / == @ [LP
Na 0.79 T T T T T T T T )
1 4 128 256 512 1024 2048 4096 8192 16384
£LLP - 4 farN_ h(X) Batch Size
a =1 . . .
time/epoch increases # of epochs increas
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Weak Supervision in Summary

We now have two candidate methods to train ML algorithms directly on jet data!

Property

{ "

LLP CWola

No need for fully-labeled samples
Compatible with any trainable model
No training modifications needed
Training does not need fractions
Smooth limit to full supervision
Works for > 2 mixed samples

AR TR T N N
S NSNS
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Topic Modeling .=

PCA?

Unsupervised a0
. - Imensionall
Supervised Learning /PSS g 187

A statistical model from natural language processing. - [Spi _
wr Machine

Classification Le arn | n g Topic

asso?

Modeling

Used to discover the emergent themes or “topics” ...
in a collection of documents or “corpus”. el

Reinforcement

A Topic Model View of the World: | oo

Document (e.g. newspaper article) = Bag of words.

Corpus (e.g. collection of articles) = Bag of documents.

Topic (e.g.“Health”) = Distribution over words.

Each document is comprised of mixtures of topics.

The goal of topic modeling is to find the topics and the mixture proportions.

For example:
“Sports” topic: {Score, game, football, baseball, soccer, tie, win, lose, ...}

“Finance” topic: {Interest, dividends, crash, buy, sell, price, ...}
“Politics” topic: {Law, Congress, President, election, campaign, ...}

A newspaper article might be 80% politics, 20% finance, and 0% sports.
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Topic Modeling

The machine learning community has a zoo of methods for topic modeling.
Some even with theoretical guarantees!

Topics

gene 0.04
dna 0.02
genetic 0.01

e

life 0.02
evolve 0.01
organism 0.01

I

brain 0.04

Topic proportions and

Documents assignments

neuron 0.02
nerve 0.01
data 0.02

number 0.02
computer 0.01

L A

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK— “are not all that far apart,” cspecially in
How many does an Brganismi nee comparison to the 75,000 in rh\ hu
g I
Survel Last week ar the genome meeting «enome, notes Siv Andersson o8Ber<ila
here,” rtwo genome rescarchers with radically
different approaches presented complemen- ip with acons
tary views of the basic genes needed forllife
One research team, using wputer analy
ses to compare known nes, concluded More \
that today’s SESERISIS can be sustained with  sequenced. “It may be a way of organizin
just 25C genes, and that the earliest life forms iny newly ! " explains g —
required a mere 128 ¢ The —— Arcady Mushegian, a computational mo /
other researcher mapped genes : lecular biologist at the Natia — .
in a simple parasite and esti for Biotechnology Information TNCB
/ Haemophilus .
mated that for this organism, / genome in Bethesda, Maryland. Comparing at
AR 1 1703 genes
SO0 genes are plenty todo the | Bedideiting
job—but that anything short  \ Pl - FBON-2pRCHs 2
of 100 wouldn't be enough /mmm P P “gees 122 geres g
Although the numbersdon't g +22 gones l ! a
1 { Minimal +
match precisely, those predictions | gy oo . go“:_:‘.'_ o‘.f\a.‘ 5
\ %9 genes ]
N
* Genome Mapping and Sequenc- SS—
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12 mate of the minimum modern and ancient genomes
SCIENCE e VOL. 272 ¢ 24 MAY 1996

—_

53



Jet Topics

[EMM and |. Thaler, arXiv: 1802.00008]

How do jets come in? Jet Topics Mixed Jet Sample N
Jet observable distributions are mixtures Mixed Jet Sample |
istributi XXX
of the quark and gluon distributions. Qe seee
3 0000
([ X X N J
K o000
pMa = z f k(a) Pk (x) Gluon e Jet Fractions Mixed Data Histogram
k=1

Jet observables have the same generative model as documents!

Document-Jet Correspondence

Topic Model Jet Distributions
Word Histogram bin

Vocabulary Jet observable
Topic Type of jet (i.e. jet topic)
Document Histogram of jet observable(s)
Corpus Collection of histograms
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Jet Topics

Probability Density

What is topic modeling with jets good for?

We can use topic modeling methods to extract the topics (quark and gluon distributions)
and the mixture proportions (quark and gluon fractions).

0.40
0.05 1 Jet Topics --- 7 + quark Topics Fracs. w. Mult.
g% Pythia 8.226, /5=13 TeV 0.35 - Pythia 8.226, \/s=13 TeV
T . : === 7 + gluon ki :
Qo R =04, pr €[250,275] GeV R = 0.4, pr €[250,275] GeV
Jet Topic 1
0.04 1 0.30 P
Z + jet B Jet Topic2
EZ2 dijets 0.25 1 P X
0.03 1 r_-_—‘ 7, < quark %|T~z 090 ,”,’ \\\\
- ! ~lg Y / S
— =4 Z + gluon ’u / ) N
=
0.02 A O Jet Topic 1 0154 7 N
Jet Topic 2
0.10 -
0.01 1
0.05 1
OOO b " T A T~ P —— 00() T T T T T T T
0 20 40 60 80 100 —-20 -15 -—-10 -—-0. 0.0 0.5 1.0 1.5 2.0

Constituent Multiplicity Rapidity y

Jet topics sheds light on defining “quark” and “gluon” in theory & in experiment.
Extract the notion of “quark” and “gluon” from the data itself.

The jet topics method can be used directly on data! -



Jet Tasks We'll Talk About

Jet Tagging: How can we distinguish a quark jet vs. a gluon jet? A W jet vs.a QCD jet?

% vs. % Classification
q g

[PTK, EMM, M.D. Schwartz, 1612.01551]

Pileup Mitigation: Can we decontaminate the jet radiation from soft, diffuse pileup?

///‘ZB =’% Denoising

[PTK, EMM, B. Nachman, and M.D. Schwartz, 1707.08600]

Data vs. Simulation: Do we really need simulations to provide labeled training data? Or
are there ways to train algorithms directly on the (unlabeled) data?

Simulation
>y

VS.

' v’ Weak Supervision

[PTK, EMM, B. Nachman, and M.D. Schwartz, 1801.10158]

0.05 . 0.15
Track Width

Measuring Jet Observables: Do we need to perfectly classify quark and gluon jets to
separately measure quark and gluon jet observable distributions?

I Mixed Jet Sample N

Mixed Jet Sample | Toplc MOdeIIng
(A X X J
Quark Jet (XXX ]
0000 5 d h [EMM and ]. Thaler, 1802.00008]
I cees
56
Jet Fractions Mixed Data Histogram



https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1707.08600
https://arxiv.org/abs/1801.10158
https://arxiv.org/abs/1802.00008

Many Interesting ldeas Out There!

A wealth of new ways to directly access physics with machine learning methods!

Our model at a single time step E

P; = P(not end) - P(parent | not end) - P(daughters | parent)

F D [ 1 | m s Z end the pi C:wexset o split the sughte
shower? Sarert parent | T~
. « Task specific networks
QCD, Lund Image (In pt): Pt > 500GeV compute probabilities \ )

/

» RNN stores global
1073 jet substructure

density oc asC

10-4

In(p¢, 2 AR1,/GeV)

A. Andreassen, C. Frye,
|. Feige, M. Schwartz

103 .
Slide from B. Nachman.

0 1 2 3 4 5 6 7 8 9 11
b Even more waiting to be developed!
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Thank you!



Backup Slides



Jet Mass Correlation Coefficient

Robustness of PUMML

Train and test on different amounts of pileup

1.00
.':.l.-- I
i_ERalkmm | |
0.8 {=""gleratps lIllll=|:=l-I“-..'.--.I|-..l-. "un
l .. ...-. w n
0.96 - I ® e® -.I .-.'....- ]
: I e . I am "n
| Sevee,’ |
_ L ]
0.94 i * o :
o9 ®
|
@ o
| m  PUMMLtrainedon NPU=20 | ¢® e 4
0.90 1 | ®  PUMML trained on NPU=140 | ° .
| PUPPI |
0.88 - | ® SoftKiller l
A |
0 25 50 75 100 125 150 175

NPU

PUMML more robust than PUPPI and SK
across a wide amount of pileup!

Train and test on different processes

1.00 T

0.98 -
0.96
0.94
0.92

D
0.90 -
0.88

0.86

Jet Mass Correlation Coefficient

0.84 F

T T

1

q

oo SoftKiller

=& PUMML, m, =200 GeV ||
®—-@ PUMML, m,=2000 GeV
e—e PUPPI i

300 400

500

600 700
mg (GeV)

800 900

PUMML demonstrates process independence!
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What is PUMML Learning?

Train PUMML on a simplified architecture

Neutral Total Filter

Charged Pileup Filter

Charged Leading Vertex Filter

0.0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-1.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Approximately learns linear cleansing!

pNLV — pNtot _ (i _ 1) C,PU



Multigraph/EFP Correspondence

Multigraph +«—— EFP

M M M M M
o 2
S 3D 3D 30 3D SE TR R RN
11=119=113=114=115=1

J
k [

— Zij

— . 6

Kkl

N  Number of vertices «—— N-particle correlator

d Number of edges <+ Degree of angular monomial
Treewidth + | +<—> Optimal VE Complexity
Connected +<—— Prime
Disconnected +<—— Composite
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EFPs linearly span IRC-safe observables

|IRC-safe Observable

Energy Expansion: Expand/approximate the observable in polynomials of the particle energies

IR safety: Observable unchanged by addition of infinitesimally soft particle
C safety: Observable unchanged by the collinear splitting of a particle

Relabeling Symmetry: All ways of indexing particles are equivalent

New, direct argument from IRC safety
See also: F. Tkachov, hep-ph/9601308
N. Sveshnikov and F. Tkachov, hep-ph/9512370

Energy correlators linearly span IRC-safe observables

Angular Expansion: Expansion/approximation of angular part of correlators in pairwise angular distances
Analyze: [dentify the unique analytic structures that emerge as non-isomorphic multigraphs/EFPs

M. Hogervorst et al. arXiv:1409.1581
B. Henning et al. arXiv:1706.08520

l Similar expansions & emergent multigraphs in:

EFPs linearly span/approximate IRC-safe observables!
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Linear Regression and IRC-safety

1.0 1

I
%

<
=N

Corr. Coef. 5" — 95" Percentile
I
()

0.0

m .
p—]: IRC safe. No Taylor expansion due to square root.
T]

T,: IRC safe. Algorithmically defined.
T,1: Sudakov safe. Safe for 2-prong jets and higher.
T32: Sudakov safe. Safe for 3-prong jets and higher.

Multiplicity: IRC unsafe.

=
=
f

QCD Jets (I prong) W Jets (2 prong)
W 101
————A--—TATTTT
k- TATTTE 2
'3g - 208
- <
-~ S
| § =
,-—“’. 2 0.6 1
- |
F 4a = -
-7 —— my/pry S .——”. —— my/prJ
- _--n o— \e=1/2) < 0.4 —0— \a=1/2)
»----R o 3 N
° 7_2(371) O ° /_;L])
B=1 = B=1
1 QcD Jets -m- =Y S 0ad W Tets - 7=
Pythia 8.226, \/s = 13 TeV —m- =D Pythia 8.226, \/5 = 13 TeV - =D
EFP 8 = 1, anti-ky R=0.8 32 EFP 8 = 1, anti-kr R=0.8 '32
500 CeV < pr < 550 GeV —&k- Mult. 500 GeV < pr < 550 GeV —&=- Mult.
T T T T 0.0 T T T T T T
2 3 4 5 6 7 2 3 4 5 6 7
Max Degree of EFPs Max Degree of EFPs

Expected to be IRC safe = Solid.
Expected to be IRC unsafe = Dashed.

[A. Larkoski, S. Marzani, and J. Thaler, 1502.01719]

Corr. Coef. 5" — 95t Percentile

Top Jets (3 prong)

1.0
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0.6 1
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T2
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EFP § =1, anti-kr R=0.8 = 7
500 GeV < pr < 550 GeV —&k=- Mult.
0.0 T T T T T T
2 3 4 5 6 7
Max Degree of EFPs
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Jet Topics

[EMM and |. Thaler, arXiv: 1802.00008]

Caveats apply: Only works “out of the box” for certain observables with “mutual irreducibility”.
Need some additional theory input for other observables.

]
0,08 ! Jet Topics Can understand the behavior with
N R : Sy e g a leading logarithmic calculation
. o ' Z + jet of the jet mass topics:
£0.06 - Q ' B2 diiets
:ﬁ o 0 : dijets
5 s
A 0.05 1 o) - =4 Z + quark
2 00 L, =2 o Ca G-
£ — =4 Z + gluon k(glg) = == min %, =)
= 0.04 4 | - C '
- | @ Jet Topic 1 F
2 0.031 B et Topic 2 Cr -2 _ Cr
- K — min ¥ —
A ; BON “quark”, k-corrected ((I|g) C4 3 Cx
0.02 1
0.01 1

0.00 - s -
0 10 20 30 40 50 60 70 80

Jet Mass (GeV)
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