



# The Hidden Geometry of Particle Collisions

## ATLAS Jet & Photon Physics Subgroup

May 25, 2020

# Eric M. Metodiev

Center for Theoretical Physics, MIT

Based on work with Patrick Komiske and Jesse Thaler [2004.04159]





**The Space of Collider Events** Building a Metric for Particle Collisions



**Unifying Ideas in Collider Physics** Observables, Jets, and Pileup as Geometry



**Enabling New Directions** The Fractal Dimension of QCD



## **The Space of Collider Events** Building a Metric for Particle Collisions



**Unifying Ideas in Collider Physics** Observables, Jets, and Pileup as Geometry



**Enabling New Directions** The Fractal Dimension of QCD

Eric M. Metodiev, MIT

# When are two collisions similar?

Infrared and Collinear Safety says distance must be invariant under:

- +• Addition of zero-energy particles
- $\rightarrow$  Collinear splitting of one particle into two





Dijet events from 2011 CMS Open Data – Particle Flow Candidates.

# When are two collisions similar?



The "work" required to rearrange one collision event into another.

Plus a cost to create or destroy energy.

# Infrared and collinear safe notion of distance!

Deeply related to the event "energy flow"

$$\mathcal{E}(\hat{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \, \hat{n}_i T^{0i}(t, r\hat{n})$$

[Sveshnikov, Tkachov, PLB, 9512370] [Tkachov, IJMP, 9601308]

Based on the Earth Mover's or Wasserstein Distance

[Peleg, Werman, Rom, PAMI,1989] [Rubner, Tomasi, Guibas, IJCV, 2000]

Optimal Transport Problem <u>python optimal transport</u> library





 $\beta$  : angular weighting factor R : tradeoff between moving energy and creating it







 $\mathcal{P}_1$ : Manifold of 1 particle events All events consisting of a single particle



 $\mathcal{P}_1$ : Manifold of 1 particle events

 $\mathcal{P}_2$ : Manifold of 2 particle events All events consisting of two particles

When a particle becomes **soft** or **collinear**, we recover the 1 particle manifold

 $\mathcal{P}_1 \subset \mathcal{P}_2$ 



 $\mathcal{P}_1$ : Manifold of 1 particle events

 $\mathcal{P}_2$ : Manifold of 2 particle events

 $\mathcal{P}_3$ : Manifold of 3 particle events All events consisting of three particles

When a particle becomes **soft** or **collinear**, we recover the 2-particle manifold

 $\mathcal{P}_1 \subset \mathcal{P}_2 \subset \mathcal{P}_3$ 



 $\mathcal{P}_1$ : Manifold of 1 particle events

 $\mathcal{P}_2$ : Manifold of 2 particle events

 $\mathcal{P}_3$ : Manifold of 3 particle events

 $\mathcal{P}_N$ : Manifold of N particle events All events consisting of N particles

$$\mathcal{P}_1 \subset \mathcal{P}_2 \subset \mathcal{P}_3 \subset \cdots \subset \mathcal{P}_N$$



 $\mathcal{P}_1$ : Manifold of 1 particle events

 $\mathcal{P}_2$ : Manifold of 2 particle events

 $\mathcal{P}_3$ : Manifold of 3 particle events

 $\mathcal{P}_N$ : Manifold of N particle events

*U*: Uniform event

Plus many more!

 $\mathcal{P}_1 \subset \mathcal{P}_2 \subset \mathcal{P}_3 \subset \cdots \subset \mathcal{P}_N$ 

 $\mathcal{U} \not\subset \mathcal{P}_N$ 



**The Space of Collider Events** Building a Metric for Particle Collisions



## **Unifying Ideas in Collider Physics** Observables, Jets, and Pileup as Geometry



**Enabling New Directions** The Fractal Dimension of QCD

#### **Six Decades of Collider Techniques**



Eric M. Metodiev, MIT

The Hidden Geometry of Particle Collisions

14

#### **Six Decades of Collider Techniques**



15







Eric M. Metodiev, MIT

The Hidden Geometry of Particle Collisions

18

Thrust is the EMD between the event and the closest two-particle back-to-back event.



**Thrust** is the EMD between the event and the closest two-particle back-to-back event.





21

The  $k_T$  algorithm sequentially merges the closest particles to cluster the event into jets.



The  $k_T$  algorithm sequentially projects an *M*-particle event to the M - 1-particle manifold.











Constituent subtraction adds in "negative" uniform radiation and clusters it with the event.





Constituent subtraction finds the closest event consistent with uniform contamination.



#### [Komiske, EMM, Thaler, 2004.04159]





**The Space of Collider Events** Building a Metric for Particle Collisions



**Unifying Ideas in Collider Physics** Observables, Jets, and Pileup as Geometry



**Enabling New Directions** The Fractal Dimension of QCD

#### Eric M. Metodiev, MIT

# Enabling New Directions: Event Isotropy

**Event Isotropy** is a new observable to probe how "uniform" an event is. [Cesarotti, Thaler, 2004.06125]

It is sensitive to very different new physics scenarios, compared to existing event shapes. e.g. uniform radiation from micro black holes

$$\mathcal{I}(\mathbf{\mathcal{E}}) = \mathrm{EMD}(\mathbf{\mathcal{E}}, \mathcal{U})$$

where  ${\cal U}$  is a fully isotropic event



Dijet event from 2011 CMS Open Data – Particle Flow Candidates.



# **Enabling New Directions:** Event Isotropy

**Event Isotropy** is a new observable to probe how "uniform" an event is. [Cesarotti, Thaler, 2004.06125]

It is sensitive to very different new physics scenarios, compared to existing event shapes. e.g. uniform radiation from micro black holes

> $\mathcal{I}(\mathcal{E}) = \mathrm{EMD}(\mathcal{E}, \mathcal{U})$ [Komiske, EMM, Thaler, 2004.04159]



where u is a fully isotropic event



A new probe of the fractal nature of QCD.

Goes beyond an observable,  $\mathcal{O}(\mathcal{E})$ 

"How much information is in a jet?"

[Datta, Larkoski, JHEP, 1704.08249]

"How many particles do I resolve at this energy scale?"

[Larkoski, EMM, JHEP, 1906.01639]

P.S. Related to the event-event correlators of Theory Space.

[Komiske, EMM, Thaler, 2004.04159]



[Komiske, EMM, Thaler, PRL, 1902.02346] [Komiske, Mastandrea, EMM, Naik, Thaler, PRD, 1908.08542]



Questions

What are the scales in the system?

#### What is its dimensionality or complexity?

How do I characterize it?



#### Small scales: Two-dimensional plane





Small scales: Two-dimensional plane



## Medium scales: One-dimensional line





Small scales: Two-dimensional plane



Medium scales: One-dimensional line



Large scales: Zero-dimensional point



# **Enabling New Directions**





[Grassberger, Procaccia, PRL, 1983] [Kegl, NeurIPS, 2002]



A spectrum of the dataset at a glance.







Eric M. Metodiev, MIT

#### The Hidden Geometry of Particle Collisions







# Enabling New Directions: Beyond this talk



"Theory Space"

[Komiske, EMM, Thaler, 2004.04159] [Thaler, CERN Theory Colloquium]

Flavor-dependence in the metric

[Romao, Castro, Milhano, Pedro, Vale, 2004.09360]





New grooming or pileup mitigation techniques?

New jet clustering algorithms?



**The Space of Collider Events** Building a Metric for Particle Collisions



**Unifying Ideas in Collider Physics** Observables, Jets, and Pileup as Geometry



**Enabling New Directions** The Fractal Dimension of QCD





## When are two events similar?



400 GeV R = 0.5 anti-  $k_T$  Jets from CMS Open Data

# When are two events similar?

An event is...

## Theoretically: very complicated



#### Experimentally: very complicated



#### However:

The *energy flow* (distribution of energy) is the information that is robust to: fragmentation, hadronization, detector effects, ...

[N.A. Sveshnikov, F.V. Tkachov, 9512370] [F.V. Tkachov, 9601308] [P.S. Cherzor, N.A. Sveshnikov, 9710349]

Energy flow ⇔ Infrared and Collinear (IRC) Safe information



Eric M. Metodiev, MIT

52





 $\beta$  : angular weighting factor R : tradeoff between moving energy and creating it



# A Geometric Language for Observables

Events close in EMD are close in any infrared and collinear safe observable!



# A Geometric Language for Observables

Events close in EMD are close in any infrared and collinear safe observable!



Jet angularities with  $\beta \geq 1$ : [C. Berger, T. Kucs, and G. Sterman, 0303051] [A. Larkoski, J. Thaler, and W. Waalewijn, 1408.3122]  $\lambda^{(\beta)}$ 

$$\lambda^{(\beta)} = \sum_{i=1}^{M} \underline{E}_{i} \,\theta_{i}^{\beta}$$

$$\left|\lambda^{(\beta)}(\mathbf{\mathcal{E}}) - \lambda^{(\beta)}(\mathbf{\mathcal{E}}')\right| \le \beta \text{ EMD}(\mathbf{\mathcal{E}}, \mathbf{\mathcal{E}}')$$

# **Exploring the Space of Jets**



## **Most Representative Jets**

Jet Mass:  $m = \left(\sum_{i=1}^{M} p_i^{\mu}\right)^2$ 

Measures how "wide" the jet is.





[Komiske, Mastandrea, EMM, Naik, Thaler, Phys. Rev. D, 1908.08542]

# **Towards Anomaly Detection**

Mean EMD to Dataset:





Complements recent developments in anomaly detection for collider physics. [Collins, Howe, Nachman, 1805.02664] [Heimel, Kasieczka, Plehn, Thompson, 1808.08979] [Farina, Nakai, Shih, 1808.08992] [Cerri, Nguyen, Pierini, Spiropulu, Vlimant, 1811.10276]

Eric M. Metodiev, MIT

The Hidden Geometry of Particle Collisions

# Visualizing the Manifold

What does the space of jets look like?





[van der Maaten, Hinton, JMLR 2008]

#### t-SNE embedding

Eric M. Metodiev, MIT

The Hidden Geometry of Particle Collisions

# Visualizing the Manifold

What does the space of jets look like?





[van der Maaten, Hinton, JMLR 2008] [Komiske, Mastandrea, EMM, Naik, Thaler, Phys. Rev. D, 1908.08542]

t-SNE embedding: 25-medoid jets shown

Eric M. Metodiev, MIT

# Visualizing the Manifold

What does the space of jets look like?





[van der Maaten, Hinton, JMLR 2008]

[Komiske, Mastandrea, EMM, Naik, Thaler, Phys. Rev. D, 1908.08542]

Eric M. Metodiev, MIT