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Pileup
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Pileup

Pileup problem in context
Presently: ∼20 pileup vertices per bunch crossing
Run 3: ∼80 pileup vertices per bunch crossing
HL-LHC: ∼200 pileup vertices per bunch crossing
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Machine Learning?

How to input the information?
The spirit is to organize all of our available local information.
Have information on whether charged particles are pileup or not.
Need low-level inputs.

What sort of architecture?
Use tools from modern machine learning.
Don’t necessarily have to go “deep”

What sort of loss function?
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Mitigation Approaches

Pileup Per Particle Identification (PUPPI)
Bertolini, Harris, Low, and Tran, arXiv:1407.6013

Correct particle/calorimeter energies based on surrounding charged pileup distribution.

SoftKiller
Cacciari, Salam, Soyez, arXiv:1407.0408

Dynamically determined transverse momentum cut.

Jet Cleansing
Krohn, Low, Schwartz, Wang, arXiv:1309.4777

Rescaling subjet four-momenta using charged leading vertex/pileup information.

Used default parameters to give sense of performance.
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Jet Images

Treat the detector as a camera and energy deposits as pixel intensities.
Cogan, Kagan, Strauss, Schwartzman. arXiv:1407.5675

Make use of the extensively developed computer vision technology,
such as convolutional neural nets.

de Oliviera, Kagan, Mackey, Nachman, Schwartzman. arXiv:1511.05190

Translated 

Tr
an

sla
te

d 

Eric M. Metodiev (MIT) PUMML August 22, 2017 7 / 24

https://arxiv.org/abs/1407.5675
https://arxiv.org/abs/1511.05190


Modern ML in HEP

An overview of recent machine learning applications with jet images.
Classification

W vs QCD jets. (de Oliviera, Kagan, Mackey, Nachman, Schwartzman.
arXiv:1511.05190)
Top vs QCD jets. (Kasieczka, Plehn, Russell, Schell. arXiv:1701.08784)
Quark vs Gluon jets. (Komiske, EMM, Schwartz. arXiv:1612.01551)
And more...

Generation
Generative model. (de Oliveira, Paganini, Nachman. arXiv:1701.05927)

Regression
This work.
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Our Model

Inputs: three-channel RGB “pileup image”
red = pT of all neutral particles
green = pT of charged PU particles
blue = pT of charged LV particles

Output: single-channel neutral image
output = pT of neutral LV particles
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Our Study

Process
Leading vertex: 500GeV scalar to dijets with Pythia8
R = 0.4 anti-kT jets in |η| < 2 with pT > 100GeV.
Pileup: NPU=140 Poissonian of soft QCD events overlaid.

Image parameters:
Charged jet image pixel resolution: ∆η ×∆φ = 0.025× 0.025
Neutral jet image pixel resolution: ∆η ×∆φ = 0.1× 0.1
Jet image size 0.9× 0.9
Leading vertex/pileup information for charged particles with pT > 500MeV
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Pileup Images
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Architecture
What sort of neural network layers should we use?

Dense: Units connected to every input pixel with different weights

Locally connected: Units connected to local input patches with different weights

Convolutional: Units connected to local input patches with weight sharing
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Architecture

Architecture: Two convolutional layers
6× 6 filter sizes
10 filters per layer
Only 4711 parameters

Architecture is local:
Pileup removal of a pixel depends only on the information in a window around it
Can apply the trained model at the event-level, jet level, or on any specified region
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PUMML Framework
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Subtracted Jets

An example event with pileup and subtracted with each method.

Loss function: Should we treat all pT errors equally or penalize hard/soft
errors more?

` =
〈

log
(
p

(pred)
T + p̄

p
(true)
T + p̄

)2〉
,

with p̄→ 0 favoring soft pixels and p̄→∞ favors all pT equally.
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Subtracted Observables
Distributions before and after subtraction of jet pT and dijet mass
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Subtracted Observables
Distributions before and after subtraction of jet mass and N95.

Eric M. Metodiev (MIT) PUMML August 22, 2017 17 / 24



Subtracted Observables
Distributions before and after subtraction of two energy correlation
functions.
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Model Robustness
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What is being learned?

Train a single 4× 4 filter and inspect it.

Pixel-wise: pN,LVT ≈ pN,totT − 1
2p
C,PU
T

This is linear cleansing with γ̄0 = 2/3!

pN,LVT = pN,totT + (1− 1
γ̄0

)pC,PUT
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What is being learned?

Linear Cleansing Non-Linear Cleansing

PUPPI
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Learning from Data

Training from simulation risks mis-modelling issues

Prefer to train on data rather than simulation
Data overlay approach using minimum bias and zero-bias events already used by
experimental groups in other contexts.
Promising for training PUMML directly with data for the relevant application.

Eric M. Metodiev (MIT) PUMML August 22, 2017 22 / 24



Concluding Remarks

We have developed an ML framework that successfully organizes all of
the availabe local information to directly learn to mitigate pileup.

Can use tools from modern machine learning without going “deep”.

Pileup mitigation can be a good proving ground for modern machine
learning techniques in high energy physics.
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The End

Thank You!
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