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Collider data must be corrected for detector effects (“unfolded”) to be compared with many theoretical
calculations and measurements from other experiments. Unfolding is traditionally done for individual,
binned observables without including all information relevant for characterizing the detector response.
We introduce OMNIFOLD, an unfolding method that iteratively reweights a simulated dataset, using
machine learning to capitalize on all available information. Our approach is unbinned, works for arbitrarily
high-dimensional data, and naturally incorporates information from the full phase space. We illustrate this
technique on a realistic jet substructure example from the Large Hadron Collider and compare it to standard
binned unfolding methods. This new paradigm enables the simultaneous measurement of all observables,
including those not yet invented at the time of the analysis.
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Measuring properties of particle collisions is a central
goal of particle physics experiments, such as those at the
Large Hadron Collider (LHC). After correcting for detector
effects, distributions of collider observables at “truth level”
can be compared with semi-inclusive theoretical predic-
tions as well as with measurements from other experiments.
These comparisons are widely used to enhance our under-
standing of the Standard Model, tune parameters of
Monte Carlo event generators, and enable precision
searches for new physics. “Unfolding” is the process of
obtaining these truth distributions (particle-level) from
measured information recorded by a detector (detector-
level). The unfolding process ensures that measurements
are independent of the specific experimental context,
allowing for comparisons across different experiments
and usage with the latest theoretical tools [1], even long
after the original analysis is completed. Many unfolding
methods have been proposed and are currently used by
experiments. See Refs. [2–5] for reviews and Refs. [6–8]
for the most widely used unfolding algorithms.
Current unfolding methods face three key challenges.

First, all of the widely used methods require the measured
observables to be binned into histograms. This binning
must be determined ahead of time and is often chosen
manually. Second, because the measurements are binned,

one can only unfold a small number of observables
simultaneously. Multidifferential cross section measure-
ments beyond two or three dimensions are simply not
feasible. Finally, unfolding corrections for detector effects
often do not take into account all possible auxiliary features
that control the detector response. Even though the inputs
to the unfolding can be calibrated, if the detector response
depends on features that are not used directly in the
unfolding, then the results will be suboptimal and poten-
tially biased.
This Letter introduces OMNIFOLD, a new approach that

solves all three of these unfolding challenges. Detector-
level quantities are iteratively unfolded, using machine
learning to handle phase space of any dimensionality
without requiring binning. Utilizing the full phase space
information mitigates the problem of auxiliary features
controlling the detector response. There have been previous
proposals to use machine learning methods for unfolding
[9–11] as well as proposals to perform unfolding without
binning [10–13]. These proposals, however, are untenable
in high dimensions and do not reduce to standard methods
in the binned case. OMNIFOLD naturally processes high-
dimensional features, in the spirit of previous machine-
learning-based reweighting strategies [14–19], and it
reduces to well-established methods [6] in the binned case.
We also introduce simpler versions of the procedure, using
single or multiple observables, named UNIFOLD and
MULTIFOLD, respectively.
All unfolding methods require a trustable detector sim-

ulation to estimate the detector response. In the binned
formulation, the folding equation can be written asm ¼ Rt,
where m and t are vectors of the measured detector-level
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and true particle-level histograms, respectively. R is the
“response matrix”

Rij ¼ Prðmeasure ijtruth is jÞ: ð1Þ

In general, R is not invertible, so the unfolding problem has
no unique solution, and methods attempt to achieve a useful
solution in various ways. One of the most widely used
methods is iterative Bayesian unfolding (IBU) [6], also
known as Richardson-Lucy deconvolution [20,21]. Given a
measured spectrum mi ¼ Prðmeasure iÞ and a prior spec-

trum tð0Þj ¼ Pr0ðtruth is jÞ, IBU proceeds iteratively accord-
ing to the equation:

tðnÞj ¼
X

i

Prn−1ðtruth is jjmeasure iÞ Prðmeasure iÞ

¼
X

i

Rijt
ðn−1Þ
jP

kRikt
ðn−1Þ
k

×mi; ð2Þ

where n is the iteration number.
OMNIFOLD uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio

L½ðw;XÞ; ðw0; X0Þ�ðxÞ ¼ pðw;XÞðxÞ
pðw0;X0ÞðxÞ

; ð3Þ

where pðw;XÞ is the probability density of x estimated
from empirical weights w and samples X. The function
L½ðw; XÞ; ðw0; X0Þ�ðxÞ can be approximated using a classi-
fier trained to distinguish ðw;XÞ from ðw0; X0Þ. This
property has been successfully exploited using neural
networks for full phase-space Monte Carlo reweighting
and parameter estimation [19,22–26]. Here, we use neural
network classifiers to iteratively reweight the particle- and
detector-level Monte Carlo weights, resulting in an
unfolding procedure.
The OMNIFOLD technique is illustrated in Fig. 1.

Intuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”). The
starting point is a synthetic Monte Carlo dataset composed
of pairs ðt; mÞ, where each particle-level event t is pushed
through the detector simulation to obtain a detector-level
eventm. Particle-level events have initial weights ν0ðtÞ, and
when t is pushed tom, these become detector-level weights
νpush0 ðmÞ ¼ ν0ðtÞ. OMNIFOLD iterates the following steps:
1. ωnðmÞ¼νpushn−1 ðmÞL½ð1;DataÞ;ðνpushn−1 ;Sim:Þ�ðmÞ, 2. νnðtÞ¼
νn−1ðtÞL½ðωpull

n ;Gen:Þ;ðνn−1;Gen:Þ�ðtÞ. The first step yields
new detector-level weights ωnðmÞ, which are pulled back
to particle-level weights ωpull

n ðtÞ ¼ ωnðmÞ using the same

synthetic pairs ðt; mÞ. Note that νpush and ωpull are not,
strictly speaking, functions because of the multivalued
nature of the detector simulation. The second step ensures
that νn is a valid weighting function of the particle-level
quantities.
Assuming ν0ðtÞ ¼ 1, in the first iteration step 1 learns

ω1ðmÞ ¼ pDataðmÞ=pSimðmÞ, which is pulled back to the
particle-level weights ωpull

1 ðtÞ. Step 2 simply converts
the per-instance weights ωpull

1 ðtÞ to a valid particle-level
weighting function ν1ðtÞ. After one iteration, the new
induced truth is

ν1ðtÞpGenðtÞ ¼
Z

dm0pGenjSimðtjm0ÞpDataðm0Þ: ð4Þ

This is a continuous version of IBU from Eq. (2), where the
sum has been promoted to a full phase-space integral. In
fact, OMNIFOLD (and IBU) are iterative strategies that
converge to the maximum likelihood estimate of the true
particle-level distribution [27–31], which we discuss in
detail in the Supplemental Material [32]. After n iterations,
the unfolded distribution is

pðnÞ
unfoldedðtÞ ¼ νnðtÞpGenðtÞ: ð5Þ

The unfolded result can be presented either as a set
of generated events ftg with weights fνnðtÞg (and

FIG. 1. An illustration of OMNIFOLD, applied to a set of
synthetic and natural data. As a first step, starting from prior
weights ν0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights ω1 are pulled back to induce weights on
the particle-level synthetic data (“generation”). As a second step,
the initial generation is reweighted to match the new weighted
generation. The resulting weights ν1 are pushed forward to induce
a new simulation, and the process is iterated.
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uncertainties) or, more compactly, as the learned weighting
function νn and instructions for sampling from pGen.
To demonstrate the versatility and power of OMNIFOLD,

we perform a proof-of-concept study relevant for the LHC.
Specifically, we unfold the full radiation pattern (i.e., full
phase space) of jets, which are collimated sprays of
particles arising from the fragmentation and hadronization
of high-energy quarks and gluons. Jets are an ideal
environment in which to benchmark unfolding techniques,
since detector effects often account for a significant portion
of the experimental measurement uncertainties for many jet
substructure observables [33]. With the radiation pattern
unfolded, one can obtain the unfolded distribution of any
observable using Eq. (5). Hence, this procedure can be
viewed as simultaneously unfolding all observables.
Our study is based on proton-proton collisions generated

at
ffiffiffi
s

p ¼ 14 TeV with the default tune of HERWIG 7.1.5

[34–36] and Tune 26 [37] of PYTHIA 8.243 [38–40] in order
to study a challenging setting where the “natural” and
“synthetic” distributions are substantially different. As a
proxy for detector effects and a full detector simulation, we
use the DELPHES 3.4.2 [41] fast simulation of the CMS
detector, which uses particle flow reconstruction. Jets with
radius parameter R ¼ 0.4 are clustered using either all
particle flow objects (detector-level) or stable non-neutrino
truth particles (particle-level) with the anti-kT algorithm
[42] implemented in FastJet 3.3.2 [43,44]. One of the
simulations (HERWIG) plays the role of data and truth,
while the other (PYTHIA) is used to derive the unfolding
corrections. To reduce acceptance effects, the leading jets
are studied in events with a Z boson with transverse
momentum pZ

T > 200 GeV. After applying the selections,
we obtain approximately 1.6 × 106 events from each
generator.
Any suitable machine learning architecture can be used

for OMNIFOLD. For this study, we use particle flow net-
works (PFNs) [45,46] to process jets in their natural
representation as sets of particles. Intuitively, PFNs learn
and processes a set of additive observables via
PFNðfpigMi¼1Þ ¼ FðPM

i¼1ΦðpiÞÞ for an event with M
particles pi, where F and Φ are parametrized by fully
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle ϕ,
and particle identification code [47], restricted to the
experimentally accessible information (PFN-Ex [45]) at
detector level. To define separate models for step 1 and
step 2, we use the PFN architecture and training parameters
of Ref. [45] with latent space dimension l ¼ 256, imple-
mented in the ENERGYFLOW PYTHON package [48]. Neural
networks are trained with Keras [49] and TensorFlow [50]
using the Adam [51] optimization algorithm. The models
are randomly initialized in the first iteration and sub-
sequently warm started using the model from the previous
iteration. 20% of the events are reserved as a validation set
during training.

To investigate the unfolding performance, we consider
six widely used jet substructure observables [52]. The
first four are jet mass m, constituent multiplicity M, the

N-subjettiness ratio τ21 ¼ τðβ¼1Þ
2 =τðβ¼1Þ

1 [53,54], and the jet

width w (implemented as τðβ¼1Þ
1 ). Since jet grooming

[55–59] is of recent interest, we also show the jet mass
ln ρ ¼ lnm2

SD=p
2
T and momentum fraction zg after Soft

Drop grooming [58,59] with zcut ¼ 0.1 and β ¼ 0. Several
of these observables are computed with the help of FastJet

Contrib 1.042 [60].
The unfolding performance of OMNIFOLD is shown in

Fig. 2 and compared to IBU, both with n ¼ 5 iterations. We
found little difference between n ¼ 3 and n ¼ 5, though
OMNIFOLD exhibits a slight preference for more iterations.
OMNIFOLD succeeds in simultaneously unfolding all of
these observables, achieving performance comparable to or
better than IBU applied to each observable individually.
The mass is challenging for all methods as particle-type
information is relevant at the particle level but is not fully
known at the detector level, introducing additional prior
dependence. Though OMNIFOLD is unbinned, the data are
only able to constrain energy and angular scales compa-
rable to the detector resolution.
Statistical uncertainties from the prior distribution are

shown in the bottom panels of Fig. 2, holding the unfolding
procedure (i.e., response matrix and reweighting) fixed. For
this proof-of-concept study, we do not show systematic
uncertainties, though the procedure for deriving them is the
same as for IBU.Nonclosure andmodeling uncertainties can
be derived in the standard way by testing the procedure on
different Monte Carlo samples and comparing the results to
the known truth distributions. (We checked that OMNIFOLD
satisfies technical closurewhen PYTHIA is unfolded to itself.)
Experimental systematic uncertainties can be obtained by
varying the relevant effects and repeating the unfolding
procedure. Like other unfolding procedures, OMNIFOLD
cannot improve the results in phase-space regions that are
unconstrained by observed quantities. It can, however,
improve the performance if the full phase space contains
auxiliary features relevant for the detector response. To
capitalize on this full phase-space approach, it is essential
that the detector simulation properly describes these features
and that systematic uncertainties are estimated using a high-
dimensional approach [61,62].
To highlight the flexibility of our unfolding framework, we

study variations of OMNIFOLD, where the available informa-
tion is varied by controlling the inputs: (i) UNIFOLD: A single
observable as input. This is an unbinned version of IBU.
(ii)MULTIFOLD:Many observables as input. Here, we use the
six jet substructure observables in Fig. 2 to derive the detector
response. (iii) OMNIFOLD: The full event (or jet) as input,
using the full phase space information. The unfolding
performance of each method on our six substructure observ-
ables is tabulated in Table. I and compared to IBU. The
UNIFOLD and MULTIFOLD implementations both use dense
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networks with three layers of one hundred nodes each and a
two-node output layer. We see good unfolding performance
across allmethods, and even thoughOMNIFOLD is not directly
trained on these six observables, it performs comparably to or

better thanMULTIFOLD.While the detector response depends
on the jet rapidity, we checked that MULTIFOLD did not
significantly benefit from including the rapidity, thoughdoing
so could be important in a real experimental context. In
general, additional information can be included and the
unfolding procedure can be repeated, with the final model
chosen as the onewith the best detector-level agreement with
the data.
Since OMNIFOLD unfolds the full radiation pattern, it can

be used to probe new, physically interesting quantities that
are challenging to unfold with existing methods. One
example is the recently proposed correlation (fractal)
dimension of jets [66,67], which is a function of the energy
scale Q. This complicated statistic is defined by pairwise
metric distances between jet radiation patterns, falling
outside of the purview of single-observable unfolding
techniques. Within our jet samples, we restrict to energetic
jets with pjet

T > 500 GeV, boosted to the origin of the
rapidity-azimuth plane, and with constituents rescaled to
have pT summing to 500 GeV. The correlation dimensions
of these jets, both before and after applying OMNIFOLD, are
shown in Fig. 3. The unfolded results match the true
distribution over a wide range of Q values, with residual
prior dependence seen at low Q (i.e., the infrared) where

TABLE I. The unfolding performance of OMNIFOLD, MULTI-

FOLD, and UNIFOLD on six jet substructure observables, com-
pared to IBU. The performance is quantified by the triangular
discriminator [63–65] Δðp; qÞ ¼ 1

2

R
dλf½pðλÞ − qðλÞ�2=pðλÞ þ

qðλÞg (×103) between the unfolded and truth-level (binned)
histograms. Also shown are the distances from data (no
unfolding) and generation (the prior). The best unfolding method
for each observable is shown in bold. All methods perform well,
with OMNIFOLD providing consistently good performance.

Observable

Method m M w ln ρ τ21 zg

OMNIFOLD 2.77 0.33 0.10 0.35 0.53 0.68
MULTIFOLD 3.80 0.89 0.09 0.37 0.26 0.15
UNIFOLD 8.82 1.46 0.15 0.59 1.11 0.59

IBU 9.31 1.51 0.11 0.71 1.10 0.37

Data 24.6 130 15.7 14.2 11.1 3.76
Generation 3.62 15 22.4 19 20.8 3.84

FIG. 2. The unfolding results for six jet substructure observables, using HERWIG 7.1.5 (“Data”/“Truth”) and PYTHIA 8.243 tune 26
(Sim./Gen.), unfolded with OMNIFOLD and compared to IBU. OMNIFOLD matches or exceeds the unfolding performance of IBU on all
of these observables. We emphasize that OMNIFOLD is a single general unfolding procedure, whereas unfolding with IBU must be done
observable by observable. Statistical uncertainties are shown only in the ratio panel.
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jets have a higher dimensionality and detector effects have a
larger impact, thus making the unfolding problem more
difficult. More broadly, OMNIFOLD opens the door to going
beyond per-event collider observables towards more
nuanced or intricate measurements of the data.
In conclusion, we have presented a potentially trans-

formative unfolding paradigm based on iteratively
reweighting a set of simulated events with machine learn-
ing. Our OMNIFOLD approach allows an entire dataset to be
unfolded using all of the available information, avoiding
the need for binning and restricting to single observables.
We have demonstrated the power of this method in a
(simulated) case of interest by unfolding the full radiation
pattern of jets, paving the way for significant advances in
jet substructure at the LHC. Our unfolding framework
allowed us to go beyond per-event observables towards
unfolding more complex dataset statistics, such as fractal
dimensions of the space of jets. Going even further,
(unsupervised) machine learning models may be trained
directly at the particle level by using the unfolded and
weighted dataset, which is a fascinating avenue for further
exploration. These advances have broad applicability
beyond particle physics in domains where deconvolution
or unfolding is used, such as image-based measurements
and quantum computation [68]. To enable future unfolding
studies and developments, we have made our code and jet
datasets publicly available [69,70], including two addi-
tional tunes of PYTHIA beyond those presented here.
Finally, our reweighting-based unfolding strategy allows

for new observables to be measured long after the unfolding
is carried out, which can significantly empower future
public and archival collider data analyses [71].
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