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Multiparticle correlators are mathematical objects frequently encountered in quantum field theory and
collider physics. By translating multiparticle correlators into the language of graph theory, we can gain new
insights into their structure as well as identify efficient ways to manipulate them. We highlight the power of
this graph-theoretic approach by “cutting open” the vertices and edges of the graphs, allowing us to
systematically classify linear relations among multiparticle correlators and develop faster methods for their
computation. The naive computational complexity of an N-point correlator among M particles is OðMNÞ,
but when the pairwise distances between particles can be cast as an inner product, we show that all such
correlators can be computed in linear OðMÞ run-time. With the help of new tensorial objects called energy
flow moments, we achieve a fast implementation of jet substructure observables like C2 and D2, which are
widely used at the Large Hadron Collider to identify boosted hadronic resonances. As another application,
we compute the number of leafless multigraphs with d edges up to d ¼ 16 ð15; 641; 159Þ, conjecturing
that this is the same as the number of independent kinematic polynomials of degree d, previously known
only to d ¼ 8 (279).
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I. INTRODUCTION

Multiparticle correlators are ubiquitous mathematical
structures that appear in a variety of physics domains,
including kinematic polynomials for scattering amplitudes
[1,2], operator bases for effective field theories [3,4], and
many-body expansions for molecular analyses [5,6].
Broadly speaking, multiparticle correlators appear when-
ever the fundamental entities of a system are arranged in
sets: unordered, variable-length collections of objects.
These set elements may be nuclei, atoms, fields, particles,
or other objects. Here, we refer to them as “particles,” since
we will eventually focus on multiparticle correlators in
collider physics [7–9].
The basic structure of an N-point multiparticle correlator

of M particles is

XM
i1¼1

XM
i2¼1

� � �
XM
iN¼1

zi1zi2 � � � ziNfðpi1 ; pi2 ;…; piN Þ; ð1Þ

where zi are particle weights, pi are particle properties, and
f is a function of these properties. In the particle physics
literature, Eq. (1) appears as the C-correlators of Ref. [10].
The function f is often decomposed in terms of monomials
of pairwise distances or invariants θij between the particles:

fðpi1 ;…; piN Þ ¼ θα12i1i2
θα13i1i3

� � � θαN−1N
iN−1iN

; ð2Þ

where αij are integer exponents. An argument for the
generality of this restriction (up to isometries) in the context
of collider observables is given in Ref. [9]. This simpli-
fication allows multiparticle correlators to be decomposed
into smaller pieces, which is essential for deriving the
results below.
In this paper, we develop the theory of multiparticle

correlators by representing them as multigraphs, allowing us
to obtain many useful results by manipulating their vertices
and edges. Specifically, by “cutting” the multigraphs along
either their vertices or edges, we derive otherwise opaque
linear relations among sets of correlators. Furthermore, in
special cases where the pairwise distances θij take the form
of an inner product, we show that the complexity of
computing a multiparticle correlator can be reduced from
OðMNÞ down to the minimally required OðMÞ. We high-
light various connections of these mathematical results to
high-energy physics, including counting kinematic polyno-
mials relevant for superstring amplitudes [1,2] and speeding
up the computation of jet substructure observables [7–9].
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A detailed outline of this paper is as follows. In Sec. II,
we summarize the basics of multiparticle correlators and
review the multigraph-multiparticle correlator correspon-
dence of Ref. [9]. Several well-known examples of multi-
particle correlators are discussed, including kinematic
polynomials and energy flow polynomials (EFPs) [9].
We also review the computational complexity of multi-
particle correlators and show how the simplification in
Eq. (2) allows us to improve upon the naiveOðMNÞ scaling
using the variable elimination algorithm [9,11].
In Sec. III, we introduce a method to slice the vertices of

multigraphs. By cutting vertices in half, the multiparticle
correlator in Eq. (1) can be decomposed into contractions of
“particle tensors” whose indices run from 1 to M (the
number of particles). We then derive linear relations among
multiparticle correlators when M is small compared to N.
The key for understanding these linear relations is a well-
known tensor antisymmetrization identity. In m dimen-
sions, antisymmetrizing any tensor over l > m indices
yields zero:

T
a1���aj
b1���bk½c1���cl� ¼ 0: ð3Þ

This follows immediately from the fact that any assignment
of the m possible values to the l > m indices must have a
repetition and therefore vanish. These particle tensors
also enable further computational speedups through
methods such as fast matrix multiplication and dynamic
programming.
In Sec. IV, we explore the consequences of making an

additional simplifying assumption, namely that the pair-
wise distances θij are given by an inner product,

θij ¼ ημνu
μ
i u

ν
j; ð4Þ

for some vectors uμi ; u
ν
j and metric ημν with the Einstein

summation convention. This assumption applies, for in-
stance, to kinematic polynomials of Mandelstam invariants
and EFPs with angular exponent β ¼ 2. Having made this
assumption, we can slice the multigraph edges and the
multiparticle correlators can be expressed as contractions of
“moment tensors.” This allows us to derive new linear
relations and computational speedups by cutting the edges
of the multigraphs. The antisymmetrization identity in
Eq. (3), now applied to the moment tensors, explains
redundancies that appear when the dimension of the inner
product space is small compared to the number of edges.
Multiparticle correlators can now be computed in OðMÞ,
since they are sewn together from moment tensors, each of
which is OðMÞ to compute. This result generalizes the
well-known fact that the invariant mass of a set of massless
particles does not require OðM2Þ time to compute, since
one can simply sum over the four-vectors in OðMÞ:

XM
i¼1

XM
j¼1

pi · pj ¼
�XM

i¼1

pμ
i

�2

: ð5Þ

This reduced complexity is particularly relevant for quan-
tum algorithms for collider physics, where preprocessing
and loading classical data into a quantum computer can be a
key computational bottleneck [12].
In Sec. V, we show how momentum conservation can be

used to trim away valency-1 leaves from the multigraphs.
As an interesting physical application, we use these
trimmed moment tensors to count independent kinematic
polynomials up to degree d, which is relevant for enumer-
ating superstring amplitudes [1]. By translating this prob-
lem to our graphical language, we are able to significantly
extend existing integer sequences by simply enumerating
leafless multigraphs, advancing previous results from
d ¼ 8 [1,2] to d ¼ 16 [13,14].
In Sec. VI, we highlight the relevance of our results for

collider physics. As shown in Ref. [9], the EFPs fully
capture the infrared-and-collinear-safe (IRC-safe) informa-
tion in the radiation pattern of an event, for any choice of
angular exponent β. For the special choice of β ¼ 2, the
EFPs can be written as Lorentz contractions of energy flow
moments (EFMs), which are IRC safe by construction. An
EFM with v indices takes the form

Iμ1���μv ¼ 2v=2
XM
i¼1

Ein
μ1
i � � � nμvi ; ð6Þ

where Ei are particle energies, pμ
i are massless particle

momenta, and nμi ≡ pμ
i =Ei. The EFMs are introduced for

the first time in this paper, though we show that they are
closely related to other moment tensors appearing previ-
ously in the literature. Using the EFMs, we demonstrate
that the computationally expensive jet substructure observ-
ables C2 [7] and D2 [8], widely applied for new physics
searches at the Large Hadron Collider (LHC), can signifi-
cantly benefit from the computational speedups developed
here. We make the fast implementations of these observ-
ables available in the ENERGYFLOW PYTHON package [15],
which also provides tools to compute any multiparticle
correlator.
Our conclusions are presented in Sec. VII. We derive

additional linear relations for multiparticle correlators in the
context of eþe− collisions in the Appendix.

II. MULTIPARTICLE CORRELATORS

This section summarizes the basic properties of multi-
particle correlators. We review the correspondence between
multiparticle correlators and multigraphs, provide two key
examples of multiparticle correlators relevant for high-
energy physics, and discuss previously known techniques
to decrease their computational complexity.
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A. Correlators as graphs

As shown in Ref. [9], multigraphs are an efficient and
intuitive way to represent multiparticle correlators. Each of
the N sums and weight factors in Eq. (1) corresponds to a
vertex, and each pairwise distance factor in Eq. (2) corre-
sponds to an edge. These rules can be graphically sum-
marized as

ð7Þ

The “multi” in multigraph refers to the fact that two vertices
can be connected by more than one edge.
In this language, a multiparticle correlator with graph G

is written as

XM
i1¼1

XM
i2¼1

� � �
XM
iN¼1

zi1 � � � ziN
Y

ðk;lÞ∈G
θikil ; ð8Þ

where ðk;lÞ are the pairs of vertices connected by the edges
inG. As an example, consider the following multigraph and
its corresponding correlator:

ð9Þ

This correlator has three sums corresponding to the three
vertices of the multigraph. Each of the edges contributes a
factor of θij to the argument, with θi2i3 absent due to no
edge connecting two of the vertices. Any permutation σ of
i1;…; iN to iσð1Þ;…; iσðNÞ yields an identical correlator by
the symmetry of the sum structure. Graphically, this
translates to the fact that isomorphic multigraphs corre-
spond to the same correlator, which allows us to write the
graphs without labels on the vertices.
To quantify the number of unique analytic structures in

the correlators, it is helpful to organize them by the degree
d of the monomial, or equivalently the number of edges in
the associated multigraph. The number of unique multi-
particle correlators of each d up to d ¼ 7 is tabulated in
Table I based on entries in the On-Line Encyclopedia of

Integer Sequences (OEIS) [16]. As an explicit demonstra-
tion, Table II shows the expressions and multigraphs for all
13 multiparticle correlators with degree d ≤ 3. Correlators
corresponding to connected multigraphs are also separately
tabulated, as disconnected ones are simply the product of
their connected components.

B. Kinematic polynomials

As one application in high-energy physics, multiparticle
correlators arise in the study of kinematic polynomials.
These are symmetric polynomials built from Mandelstam
invariants:

sij ¼ ðpμ
i þ pμ

j Þ2 ¼ 2pμ
i pjμ; ð10Þ

where the last equality assumes massless particles
(p2 ¼ 0). Kinematic polynomials have been used to build
operator bases [3,4] for quantum field theories and under-
stand the structure of scattering amplitudes [1].
In our notation, kinematic polynomials are multiparticle

correlators of the form

zi ¼ 1; ð11Þ
θij ¼ sij; ð12Þ

and so the insights we develop here are directly applicable
to this context.
It is worth noting that an analog of the graphical notation

for multiparticle correlators was also developed in Ref. [3]
and mentioned in Ref. [4]. Beyond this, Hogervorst et al.
[3] remark that there are linear relations among the
kinematic polynomials which can complicate certain analy-
ses, and that a classification of those relations would be
required to pursue particular strategies. We will explore
these relations among multiparticle correlators at length,
seeking to understand and classify these relations.

C. Energy flow polynomials

A family of multiparticle correlators relevant for collider
physics is the set of EFPs [9]. Explicitly, EFPs are defined
as multiparticle correlators of the form

zi ¼ Ei; ð13Þ
θij ¼ ð2nμi njμÞβ=2; nμi ≡ pμ

i =Ei; ð14Þ

where Ei is the energy of particle i, nμi ¼ ð1; n̂iÞμ for
massless particles, and β is an angular weighting factor.
While we use particle energies Ei here to simplify the
notation, in a hadron collider context these would be
replaced with particle transverse momenta pTi.
The EFPs are IRC-safe observables, which are guaran-

teed to be finite and computable in perturbative quantum
field theory [19–23]. An observable is IRC safe if it is
unchanged by the addition of a soft particle with E → 0 or

TABLE I. The number of multiparticle correlators of degree d.
These are equivalent to the number of nonisomorphic multi-
graphs with d edges, tabulated for connected and all multigraphs.

Degree d 0 1 2 3 4 5 6 7

Connected A076864 [17] 1 1 2 5 12 33 103 333
Cumulative 1 2 4 9 21 54 157 490

All A050535 [18] 1 1 3 8 23 66 212 686
Cumulative 1 2 5 13 36 102 314 1 000

CUTTING MULTIPARTICLE CORRELATORS DOWN TO SIZE PHYS. REV. D 101, 036019 (2020)

036019-3



by the collinear splitting of one particle into two with pμ →
fλpμ; ð1 − λÞpμg for any λ ∈ ½0; 1�. While Ref. [9] shows
via direct computation that the EFPs are IRC safe, we will
later develop a simple notation which makes this fact
manifest in the β ¼ 2 case (see Sec. VI A).
For any choice of β > 0, the EFPs form a linear

basis of all IRC-safe observables [9], meaning that any
IRC-safe observable can be approximated by a finite
linear combination of EFPs. Many common collider

observables are encompassed by the EFPs [7,24] or
can be cast as exact linear combinations of EFPs [25–29].
While it has been shown that the EFP basis can be useful
for jet classification [9,30], the basis is overcomplete
even for fixed β, in the sense that there are linear
relations among the elements, which complicates the
use of linear fitting methods. Understanding these rela-
tions is a key goal of this paper, which we will
accomplish in Secs. III C and IV C.

TABLE II. All distinct multiparticle correlators with degree d ≤ 3, shown as multigraphs and written explicitly.

Degree Multigraph Multiparticle correlator

d ¼ 0 ¼ P
M
i¼1 zi

d ¼ 1

¼ P
M
i1¼1

P
M
i2¼1 zi1zi2θi1i2

d ¼ 2

¼ P
M
i1¼1

P
M
i2¼1 zi1zi2θ

2
i1i2

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1 zi1zi2zi3θi1i2θi1i3

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1

P
M
i4¼1 zi1zi2zi3zi4θi1i2θi3i4

d ¼ 3

¼ P
M
i1¼1

P
M
i2¼1 zi1zi2θ

3
i1i2

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1 zi1zi2zi3θi1i2θi2i3θi1i3

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1 zi1zi2zi3θ

2
i1i2

θi1i3

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1

P
M
i4¼1 zi1zi2zi3zi4θi1i2θi1i3θi1i4

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1

P
M
i4¼1 zi1zi2zi3zi4θi1i2θi2i3θi3i4

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1

P
M
i4¼1 zi1zi2zi3zi4θi1i2θ

2
i3i4

¼ P
M
i1¼1

P
M
i2¼1

P
M
i3¼1

P
M
i4¼1

P
M
i5¼1 zi1zi2zi3zi4zi5θi1i2θi3i4θi3i5

¼
P

M
i1¼1

P
M
i2¼1

P
M
i3¼1

P
M
i4¼1

P
M
i5¼1

P
M
i6¼1 zi1zi2zi3zi4zi5zi6θi1i2θi3i4θi5i6
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D. Computational complexity

An N-particle correlator in Eq. (8) is naively computable
in OðMNÞ by evaluating the N nested sums over M
particles. This computational complexity can typically be
significantly improved upon, however, by exploiting the
algebraic structure of the sums, as we have detailed in
Ref. [9] and summarize here. Efficiently computing multi-
particle correlators is especially important for collider
physics applications, where hundreds to thousands of
final-state particles are produced in each collision.
The key insight is to iteratively perform the sums in a

carefully chosen order. For example, we can write the
following correlator in a suggestive way:

ð15Þ

which can be evaluated in OðM2Þ by computing the
parenthetical quantities in OðMÞ for all M terms in the
outer sum. This strategy gives a significant improvement
over the naive OðM4Þ complexity of the correlator.
The general procedure to determine the order in which to

compute the nested sums is known as the variable elimi-
nation algorithm [11]. Using variable elimination yields a
computational complexity of OðMtwðGÞþ1Þ, where twðGÞ is
the treewidth of G, neglecting multiple edges. The tree-
width measures how “treelike” a graph is, with twðGÞ ¼ 1
for trees and higher values for other graphs. For all
noncomplete graphs, twðGÞ þ 1 < N and so variable
elimination provides a significant improvement in compu-
tational speed in most cases. Here, we see the graphical
notation is not only useful for enumerating all possible
correlators, but it also provides a natural strategy for
efficiently evaluating the correlators. In the next two
sections, we exploit this graphical language for further
computational gains.

III. CUTTING OPEN VERTICES

In this section, we begin to surgically disassemble the
multigraphs by slicing them through their vertices. This
yields particle tensors whose indices index particles and
allows us to view the correlators as contractions over these
indices. Using these particle tensors, we can understand
linear relations that emerge when the number of particles is
small as well as speed up certain computations beyond
what is possible through variable elimination alone. These

results hold for any multiparticle correlator of the form in
Eq. (8), regardless of the choice of pairwise distances θij.

A. Particle tensors

One can view the sums over particle indices i1;…; iN in
Eq. (8) as contractions of tensorial objects. We can
explicitly find these tensors by slicing open the multigraph
vertices. For example, the following correlator can be
written suggestively as

ð16Þ

where the indices i1, i2, i3 are contracted via Einstein
summation notation, and we have defined the particle
tensors as

T i ¼ ffiffiffiffi
zi

p
; T ðα12Þ

i1i2
¼ ffiffiffiffiffiffiffiffiffiffi

zi1zi2
p

θα12i1i2
: ð17Þ

Note that this decomposition is not unique, and we could
have represented Eq. (16) alternatively as

T i1T i2T i3T
ð3;0;1Þ
i1i2i3

; ð18Þ

where the three-index particle tensor is

T ðα12;α13;α23Þ
i1i2i3

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi1zi2zi3

p
θα12i1i2

θα13i1i3
θα23i2i3

: ð19Þ

This is an example of an N-index particle tensor:

T ðfαabgÞ
i1���iN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiYN
j¼1

zij

vuut YN
k¼1

YN
l¼kþ1

θαklikil
; ð20Þ

where fαabg are integers ordered by ascending b then a.
The general decomposition, demonstrated by Eq. (16),

has a simple graphical interpretation as graphs with cut
vertices:

ð21Þ

Here, we have sliced open a vertex into two free indices,
which later will be contracted to obtain the sums. For
example, the alternative decomposition in Eq. (18) involves
a graph with three cut vertices:

ð22Þ
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The generic N-index particle tensor in Eq. (20) can be
represented by a multigraph G:

ffiffiffiffiffi
zi1

p � � � ffiffiffiffiffiffi
ziN

p Y
ðk;lÞ∈G

θikil ; ð23Þ

which is similar to the multiparticle correlator in Eq. (8),
albeit without the sums over particles and with square roots
on the weights zi. We also note that the particle tensors,
unlike the multiparticle correlators, depend on the particu-
lar vertex labeling of G.
For any multigraph, its vertices can be sliced in half in

many different ways, each yielding a valid tensor con-
traction expression for that correlator. All the different ways
of cutting the vertices of the triangle graph yield

ð24Þ

The first contraction in Eq. (24) is the trace of the cube of a
two-index tensor treated as a matrix, which we can
graphically represent as

ð25Þ

B. Computational complexity

Casting the particle sums in multiparticle correlators as
tensor contractions can be used to improve their computation
in several ways. First, improvements in the computational
complexity of individual correlators can be achieved using
algorithms for fastmatrix operations.While the triangle graph
in Eq. (24) is OðM3Þ to evaluate both naively and with
variable elimination, casting it as a matrix product in Eq. (25)
allows us to go beyond this limit. Using Strassen’s algorithm
[31] yields an OðM2.81Þ evaluation of the correlator, and
methods as fast as OðM2.38Þ exist [32–34]. For instance,

Strassen’s algorithmuses the structureof thematrix product to
reduce the number of operations required to multiply 2 × 2
block matrices to 7 rather than 8, which gives rise to a power
of log2 7 ≃ 2.81 in its complexity when recursively applied.
We will showcase this speedup for computing collider
observables in Sec. VI C.
Beyond improving individual correlator evaluation, the

constituent particle tensors can be used to improve the
computation of collections of correlators. Many correlators
can be built out of the same particle tensors contracted in
different ways. This allows for a dynamic programming
approach where various particle tensors are computed and
then reused many times to evaluate additional correlators.
While determining the optimal set of subgraphs to compute
for a target collection of correlators is beyond the scope of
this work, we note that it is in an interesting avenue for
further exploration.

C. Finite-particle linear relations

When there are small numbers of particles, algebraic
relations among the multiparticle correlators emerge due to
the simplified nature of the configuration. Relations of this
type were also explored in Ref. [1] for the purpose of
expanding superstring amplitudes. In the collider context,
understanding these relations is also important for calcu-
lating EFPs in fixed-order perturbative quantum field
theory with small numbers of particles. In general, under-
standing these finite-particle relations can improve the
computation of collections of correlators by avoiding the
computation of redundant elements. Further, these relations
can involve multigraphs of different computational com-
plexities, allowing for individual correlators to be evaluated
more efficiently via these relations.
The tensor identity in Eq. (3) concisely encodes many

well-known results, including several Riemann tensor iden-
tities as well as the Cayley-Hamilton theorem [35]. The
second fundamental theorem of invariant theory indicates
that any identity among a set of tensors in m dimensions,
aside from ones governed by their existing symmetries, can
be obtained as a consequence of Eq. (3) [36].
For the case of particle tensors with M particles,

antisymmetrizing over any choice of L > M indices must
vanish. We can translate this fact into the language of
cutting graphs. Graphically, we denote the antisymmetri-
zation over an index by a bracket through a vertex whose
direction indicates which of the two particle tensors to use,
and the vertex itself represents contracting the indices. The
sum over all permutations of those indices, weighted by the
sign of the permutation, must vanish by Eq. (3). After
contracting the indices, each permutation gives rise to an
associated multigraph, so this procedure gives rise to an
alternating sum of multigraphs which must vanish. Some
choices of antisymmetrizations will vanish trivially by the
symmetries of the tensors, but many do not trivially vanish
and give rise to nontrivial algebraic relations.
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To showcase this approach, in Table III we enumerate all
of the finite particle linear relations for the case of M ¼ 2
and d ≤ 3. For example, the first row of Table III corre-
sponds to the relation

3!T ½i1T
i1
i2
T i2

i3�T
i3 ¼ 2T i1T

i1
i2
T i2

i3
T i3 − T i1

i2
T i2

i1
T i3T i3 ; ð26Þ

where we have raised and lowered indices to make the
summation convention more clear. This procedure can be
extended to enumerate the relations for larger numbers of
particles.

IV. CUTTING OPEN EDGES

In this section, we show that the structure of multiparticle
correlators can be dramatically simplified if the pairwise
distances θij can be written as an inner product. In
particular, this allows us to slice open the multigraph edges
to obtain moment tensors, resulting in further computa-
tional speedups and a greater understanding of various
linear relations.

A. Moments from an inner product

The following results assume that θij can be written as an
inner product. Repeating Eq. (4) for convenience,

θij ¼ ημνu
μ
i u

ν
j; ð27Þ

for some vectors uμi ; u
ν
j and (symmetric) metric ημν. This

assumption holds for the kinematic polynomials in Eq. (12)
and for the EFP angular measure in Eq. (14) for β ¼ 2.
While we use the notation of Lorentz indices and the
Minkowski metric here, the conclusions hold for any inner
product among vectors using any choice of metric.
With this assumption, any multiparticle correlator can be

written via tensor contractions, where in this case the
indices are Lorentz indices rather than particle indices. To
that end, we introduce the following moment tensors:

Mμ1���μv ¼
XM
i¼1

ziu
μ1
i � � � uμvi ; ð28Þ

where v is the rank of the tensor. We apply this moment
logic to kinematic polynomials in Sec. VA and to β ¼ 2
EFPs in Sec. VI A.
A simple example demonstrates the connection between

multiparticle correlators and these moment tensors.
Consider the following equivalent ways of writing the
simplest 2-correlator:

ð29Þ

where the first line uses the definition of a multiparticle
correlator and Eq. (27), and the last line is explicitly a
contraction of moment tensors from Eq. (28) with Einstein
summation notation. This is the generalization of the
familiar mass identity in Eq. (5), where the inner product
allows us to separate the factors into tensors with only a
single Lorentz index.
We now generalize this procedure to demonstrate that all

multiparticle correlators can be obtained from these
moment tensors when the inner product condition holds.
The general strategy is to regroup the summand of a general
correlator into a product of factors, one for each sum index.
The resulting expression manifestly factors the dependence
on the constituent particles into tensorial objects contracted
according to the multigraph. Substituting Eq. (27) into
Eq. (8), we have

XM
i1¼1

� � �
XM
iN¼1

zi1 � � � ziN
Y

ðk;lÞ∈G
ημνu

μ
ik
uνil

¼
�YN

j¼1

XM
ij¼1

ziju
μj
1

ij
u
μj
2

ij
� � � uμ

j
vj

ij

� Y
ðk;lÞ∈G

ημkAklμ
l
Alk

¼
�YN

j¼1

Mμj
1
μj
2
���μjvj

� Y
ðk;lÞ∈G

ημkAklμ
l
Alk
; ð30Þ

TABLE III. All linear relations with M ¼ 2 particles for d ≤ 3
multiparticle correlators, derived by antisymmetrizing the particle
tensor indices.

Antisymmetrization Identity for M ¼ 2
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where vj is the valency of vertex j, μab is an index
corresponding to the bth edge associated with vertex a,
and A is a matrix such that the Aklth instance of uμik is
contracted with the Alkth instance of uμil .
Demonstrating their continued usefulness, multigraphs

provide a simpler recipe for translating between multi-
particle correlators and moment tensors than the unavoid-
ably opaque notation of Eq. (30). Each vertex in the graph
is associated with a moment having v indices, where v is
the valency of the vertex. The edges in the graph specify
which vertices are connected, and hence they encode the
contractions between indices of different moments. These
rules can be summarized as

ð31Þ

ð32Þ

Graphically, we have cut the edges of the multigraphs in
half to obtain these tensors.
As an example, consider the following multigraph

expressed both as a multiparticle correlator and in terms
of contractions of moments:

ð33Þ

ð34Þ

where pairs of indices are contracted with the metric.
Interestingly, these graphical rules are closely related to
Penrose graphical notation for tensor contractions [37].

B. Computational complexity

The moments in Eq. (28) are symmetric tensor structures
summed overM particles, and hence areOðMÞ to compute.
Since the tensor structures are fully symmetric, they only
have ðnþ v − 1Þ!=v!=ðn − 1Þ! independent components,
where n is the dimensionality of the inner product vectors
uμi and v is the rank of the tensor. The number of
independent components is therefore polynomial in the
rank v as opposed to exponential. In 3þ 1 spacetime
dimensions, n ¼ 4 and there are ðvþ 3Þðvþ 2Þðvþ 1Þ=6
independent components. Since this is independent of M
and v3 is smaller than the number of particles for many
events and multiparticle correlators of interest, computing
the moment tensors is typically computationally efficient.

Since any multiparticle correlator with an inner product
structure can be written as a contraction of moment tensors
via Eq. (30), all such correlators becomeOðMÞ to compute.
The tensorial rearrangement into moments provides a way
to circumvent the previous computational limits and
achieve linear complexity. This can be seen explicitly in
Eq. (29), where an OðM2Þ tree graph is written as a
contraction of two tensors that are each OðMÞ to compute.
Since the computation of any correlator must probe all
particles at least once, the linear complexity in M of
computing the correlators via the moments is optimal.
Thus, by computing all of the particle moments up to a
desired order v, all correlators can be obtained via tensor
contractions which are independent of M and depend only
on the dimensionality of the space. We provide an explicit
demonstration of this computational improvement for
collider observables in Sec. VI C.

C. Finite-dimension linear relations

When the dimensionality of the inner product space is
small, there are additional linear relations among the
multiparticle correlators. These relations were pointed
out by Ref. [3], and we now seek to understand them
systematically. Similar to the finite-particle relations in
Sec. III C, the key is to figure out the appropriate way to
apply Eq. (3) to antisymmetrize over more indices than
dimensions.
In this case, we antisymmetrize over the inner product

(Lorentz) indices instead of the particle indices. We
specialize to the cases of n ¼ 4 and n ¼ 3 dimensions
for the following discussion, since these are the dimension-
alities relevant for Sec. VI and the Appendix, respectively.
It is worth noting that n-dimensional identities continue to
hold in fewer than n dimensions.
The Cayley-Hamilton theorem is a special case of

Eq. (3), so we will first explore this as a method to
understand the finite-dimension identities. The Cayley-
Hamilton theorem, as typically stated, says that a matrix
A satisfies its own characteristic polynomial. Using the
Newton identities, this translates to a matrix relation
between powers of A, the trace of powers of A, and the
determinant of A. Written out explicitly for small matrices,
we have for 2 × 2 matrices

A2 − ðtrAÞAþ ðdet AÞI ¼ 0; ð35Þ

where I is the identity matrix, and for 3 × 3 matrices

A3 − ðtr AÞA2 þ 1

2
ððtrAÞ2 − trA2ÞA − ðdet AÞI ¼ 0: ð36Þ

For our first n ¼ 4 identity, we apply the 4 × 4 Cayley-
Hamilton theorem to the matrix
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ffiffiffi
η

p μ1νMνρ
ffiffiffi
η

p ρμ2 ; ð37Þ

where
ffiffiffi
η

p
is defined because η is symmetric.

Multiplying the resulting Cayley-Hamilton relation by
the matrix and taking a trace yields

ð38Þ

where we assume that Mμ
μ ¼ 0, as in our cases of interest

due to the masslessness of the particles, with the full
expression being easily obtainable but unwieldy. Note that
Eq. (38) could also have been obtained directly from the
antisymmetrization identity

ð39Þ

Higher-dimensional versions of the Cayley-Hamilton theo-
rem can be used to derive relations for larger 2-regular
graphs (hexagon, heptagon, etc.).
In addition to identities involving 2-regular graphs, we

can also multiply the expression of the Cayley-Hamilton
theorem on both sizes by

ffiffiffi
η

p μνMν in order to produce
relations among chainlike graphs, such as

ð40Þ

which holds in three or fewer dimensions. In general, the
Cayley-Hamilton theorem provides a matrix expression
valid in some number of dimensions which can be
combined with any graph fragment to give an identity.
While this approach only yields a subset of the finite-
dimension identities, Eq. (3) captures all of them in full
generality.

V. TRIMMING THE LEAVES

When there are simple global constraints on the particles,
their effects on multiparticle correlators can often be made
clear graphically. In this section, we consider cases where
center-of-momentum relations allows us to “trim the
leaves” of a multigraph, which gives us a way to count

kinematic polynomials from Ref. [1]. More exotic graphi-
cal rules are relevant for multiparticle correlators in eþe−
collisions, which we study in detail in the Appendix.

A. Revisiting kinematic polynomials

As anticipated in Sec. IVA, kinematic polynomials can
be written as contractions of moment tensors. With mass-
less particles, the relevant moment tensors take the follow-
ing form:

Pμ1���μv ¼ 2v=2
XM
i¼1

pμ1
i � � �pμv

i ; ð41Þ

with the prefactor accounting for the factor of two in the
Mandelstam invariants sij ¼ 2pμ

i pjμ. Following the logic
of Sec. IVA, all Lorentz-invariant kinematic polynomials
can be built from complete Lorentz contractions of these
moments.

B. Center-of-momentum relations

Kinematic polynomials can be further simplified when
imposing energy-momentum conservation

P
i p

μ
i ¼ 0.

Written in the generic multiparticle correlator language,
this corresponds to the following constraint:

Mμ ¼
XM
i¼1

ziu
μ
i ¼ 0: ð42Þ

Since Mμ corresponds to a vertex connected to a single
edge, we can write this constraint graphically as

ð43Þ

Therefore, momentum conservation allows us to restrict our
attention to “leafless” graphs, whose minimum vertex
valency is greater than 1.
Leafless graphs are also relevant for studying EFPs on a

collection of final-state particles. It is sometimes conven-
ient to work in the center-of-momentum frame with the
constraint

Mμ ¼ ðE; 0; 0; 0Þμ; ð44Þ

where E is a fixed energy in this frame, corresponding to
the graphical rule

ð45Þ

In the eþe− case where u0i ¼ 1, valency-1 vertices simply
contribute factors of E and we have

Mμ1M
μ1μ2���μv ¼ EMμ2���μv : ð46Þ
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Hence only leafless multigraphs need to be considered in
the center-of-momentum frame for EFPs in the case of
eþe− collisions.

C. Counting superstring amplitudes

There is an interesting dividend of our graphical under-
standing of the center-of-momentum relation in Eq. (43).
Reference [1] sought to count the number of independent,
symmetric polynomials of kinetic variables of degree d,
which is relevant for determining five-point superstring
amplitudes. They worked in the limit of many particles with
many spacetime dimensions (i.e., without finite spacetime
dimension identities). Using an interesting technique based
on Molien series, they conjectured the counts for d ≤ 8. In
our language, counting these independent polynomials of
degree d in the center-of-momentum frame corresponds to
simply counting leafless multigraphs with d edges.
We can efficiently enumerate and count the number of

leafless multigraphs using NAUTY [38], with our results
summarized in Table IV. Our sequence agrees with the
results of Ref. [1] where they overlap [2], but we are able to
overcome previous computational limitations and double
the number of known terms. These values have been added
as new sequences in the OEIS [13,14]. Enumerating
multigraphs not only allows us to efficiently count these
polynomials, but it also provides explicit constructions of
them, which may be useful in further exploring the space of
kinematic polynomials.

VI. APPLICATIONS TO COLLIDER PHYSICS

In this section, we apply the general lessons that we have
developed to obtain concrete computational and conceptual
improvements for collider observables.1 We first introduce
EFMs as novel tensorial structures to efficiently encode and
compute β ¼ 2 EFPs, and we show their relation to
previous moment tensors in the literature. We then exploit
the results of Sec. IV B to provide a maximally efficient
OðMÞ implementation of key jet substructure observables.

A. Introducing energy flow moments

With β ¼ 2, the pairwise distance measure of the EFPs
in Eq. (14) has an inner product structure. Following
Sec. IVA, the β ¼ 2 EFPs can therefore be written as
contractions of EFMs defined in Eq. (6), repeated for
convenience:

Iμ1���μv ¼ 2v=2
XM
i¼1

Ein
μ1
i � � � nμvi ; ð47Þ

where nμi ≡ pμ
i =Ei, and the prefactor accounts for the factor

of 2 in θij. The above definition is suitable for eþe−

collisions, whereas in a hadron collider context, one would
typically replace energy Ei with transverse momentum pTi
in the definitions of both Iμ1���μv and nμi .
The fact that the β ¼ 2 EFPs are IRC safe is immediately

clear via inspection of Eq. (47). Due to the linear energy
weighting, an EFM is manifestly invariant to the addition of
a zero-energy particle or the collinear splitting of one
particle into two. To form the β ¼ 2 EFPs, we need only
Lorentz contract the EFMs, which respects this IRC-safe
structure.
As an aside, parity violation is interesting to explore at

colliders [40–48]. By invoking the ϵ symbol, we can
construct parity-violating contractions of the EFMs that
go beyond the parity-invariant EFPs. Two simple parity-
violating observables of potential interest are

ϵαβγδIαIβρI γστIδ
ρστ; ϵαβγδIαρIβσ

ρ I γτ
σ Iδ

τ ; ð48Þ

which are manifestly permutation symmetric, rotationally
invariant, and IRC safe. Further investigations in this
direction are left to future work and we restrict ourselves
here to contractions with the Minkowski metric.

B. Relation to existing moments

The EFMs are closely related to existing moment-based
approaches for collider physics, dating back several dec-
ades. Here, we show that EFMs directly encompass or
suitably generalize these approaches.

TABLE IV. The number ofmultigraphswith d edges that have no
vertices of valency one (i.e., are leafless), tabulated for both
connected and all graphs. These have been added to the OEIS as
new sequences [13,14]. We conjecture that the sequence for all
graphs is the same asA226919 [2], whichwas discovered in a string
theory context [1]. The values for d > 8 (bold font) are new results.

Leafless multigraphs

Connected All

Edges d A307317 [13] A307316 [14]

1 0 0
2 1 1
3 2 2
4 4 5
5 9 11
6 26 34
7 68 87
8 217 279
9 718 897
10 2553 3129
11 9574 11 458
12 38 005 44 576
13 157 306 181 071
14 679 682 770 237
15 3 047 699 3 407 332
16 14 150 278 15 641 159

1This section also explains two cryptic comments we made in
previous papers: footnote 8 of Ref. [9] and footnote 4 of Ref. [39].
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A number of tensorial quantities similar in spirit to the
EFMs have been previously defined and explored for both
eþe− and hadronic collisions. In Ref. [49], the following
objects built out of particle three-momenta were defined for
eþe− collisions:

Θj1j2���jv ¼
XM
i¼1

Ein̂
j1
i n̂

j2
i � � � n̂jvi ; ð49Þ

where n̂i ¼ p⃗i=Ei is a unit three-vector and jk ∈ f1; 2; 3g.
We refer to the tensors defined by Eq. (49) as “generalized
sphericity tensors,” since the second-rank tensorΘ2 ¼ Θj1j2

is often called the sphericity tensor. In an eþe− context, the
spatial components of the EFMs are exactly these tensors:

I j1j2���jv ¼ 2v=2Θj1j2���jv ; ð50Þ
and, like the EFMs, the generalized sphericity tensors are
IRC safe.
The second-rank sphericity tensor Θ2 ¼ Θj1j2 has seen

significant application in the form of defining observables
from its eigenvalues. The C and D parameter event shapes
are defined in terms of the eigenvalues λ1, λ2, and λ3 of the
sphericity tensor Θ2 as

C ¼ 3ðλ1λ2 þ λ2λ3 þ λ1λ3Þ; D ¼ 27λ1λ2λ3: ð51Þ
These IRC-safe observables have been widely analyzed for
eþe− collisions both theoretically [49–53] and experimen-
tally [54–58].
To highlight the close relationship with EFMs, we note

that the C and D parameters are themselves both linear
combinations of EFPs and contractions of EFMs:

ð52Þ

ð53Þ

We derive these expressions in the Appendix. In this
graphical notation, we leave factors of total energy implicit:

ð54Þ

which must be included whenever graphs with different
numbers of vertices are added together.

The third-rank tensor Θj1j2j3 has seen additional study
[59], but the general formulation of Eq. (49) has seen very
limited application at the LHC. One reason for this may be
that is not clear how to use the tensors in Eq. (49) in a
hadronic context: the factor of energy can be promoted to
transverse momentum but the explicit appearance of the
three-momenta prevents covariance under boosts and
rotations about the collision axis. The EFMs are precisely
the generalization of the generalized sphericity tensors that
applies in both the eþe− and hadronic contexts. Including
the energy component of the particle four-momenta avails a
hadronic interpretation simply by replacing all instances of
energy with transverse momentum. Relations among these
Θj1j2���jv tensions are studied further in the Appendix.
Other constructions of moment tensors have been

proposed solely in the hadronic context. In Ref. [60], a
set of transverse-momentum-weighted moments in the
rapidity-azimuth (y;ϕ) plane were defined for narrow jets,
and a number of substructure observables were identified in
terms of their products and contractions. Letting xi ¼
ðyi;ϕiÞ indicate the rapidity-azimuth position of particle
i, and letting kj ∈ f1; 2g be rapidity-azimuth indices, these
hadronic moment tensors are

Ik1k2���kv ¼
XM
i¼1

pT;ixik1xik2 � � � xikv : ð55Þ

The two-index moment Ik1k2 has been used to define the
planar flow observable [61,62], which quantifies the linear
versus planar nature of the radiation pattern.
When boosting a jet to be central (y ¼ 0) and taking the

narrow limit yi;ϕi ≪ 1, xi become precisely two spatial
indices of the EFMs with the hadronic prescription of
zi ¼ pT;i. The tensors of Eq. (55) were defined in Ref. [60]
relative to a jet axis, which we neglect here (by boosting to
y ¼ 0) to make the relation to EFMs immediate. Choosing
a pT-weighted centroid axis, a related analysis carries
through with a jet axis included. In this way, the EFMs
generalize Ik1���kn beyond the narrow jet limit and do not
require referencing a jet axis.
Thus, we see that the EFMs can be related to moments

developed for both eþe− and hadronic collisions. Unlike
these previous moments, which were developed for a
specific type of collision, EFMs can operate in both realms
by simply exchanging energies for transverse momenta. In
this way, EFMs are a general framework for moment-based
approaches to collider physics analyses.

C. Speeding up multiprong taggers

Using the results of Sec. IV B, EFPs with β ¼ 2
are manifestly OðMÞ to compute through the EFMs.
This provides a significant computational speedup over
approaches based on variable elimination; see Sec. II D.
This computational speedup also applies to substructure

observables derived from β ¼ 2EFPs.A number of different
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observables have been proposed to tag jets with multiprong
hadronic substructure at the LHC, including two-pronged
decays of boosted W bosons and three-pronged decays of
boosted top quarks, along with other more exotic scenarios
[63,64]. These jet substructure observables have since found
significant experimental application at the LHC for multi-
prong tagging and new physics searches [65]. While most
current LHC analyses focus on β ¼ 1 observables, compa-
rable (or better) performance can be obtaining using β ¼ 2
for standard tagging applications [7,8].
As concrete examples, Ref. [7] established a family of

N-prong tagging observables CðβÞ
N , which can be written as

ratios of EFPs with complete graphs [9]. For two- and three-
prong tagging, these dimensionless ratio observables are

ð56Þ

where factors of can be restored by ensuring equal
numbers of vertices in the numerator and denominator. Note
that these observables are traditionally defined using the
rapidity-azimuth distance rather than Eq. (14), though these
are equivalent for narrow jets and our OðMÞ moment logic
can be applied in both cases.
These CN observables are in general OðMNþ1Þ to

compute, which becomes quickly computationally intrac-
table with increasing N. Using power counting arguments,
Ref. [8] established a different combination of energy
correlators as an improved two-pronged tagger called

DðβÞ
2 , given by the expression

ð57Þ

which naively requires OðM3Þ to compute. These observ-
ables can be measured before or after grooming [66–70] is
applied, as they operate on generic sets of particles. Note
that the jet substructure observable N2 cannot be expressed
as an exact combination of EFPs, since the angular
structure of the generalized correlators in Ref. [24] does
not take the form of Eq. (2).
In the case of β ¼ 2, these tagging observables can all be

computed in OðMÞ using our moment-based approach.
Further, C2 and D2 benefit (for any β) from the fast matrix
multiplication speedups toOðM2.81Þ discussed in Sec. III B.

In Fig. 1, we compare the overall computational time of

Cðβ¼2Þ
3 andDðβ¼2Þ

2 using the naive approach and themoment-
based approach.We also show the fast matrix multiplication
approach for computing D2 using Basic Linear Algebra
Subprograms [71] via NUMPY [72,73] on eight CPU cores.
(The use of multiple cores merely shifts the curve vertically
and does not alter the asymptotic scaling.) For comparison,
we include the computational time of a single 2-correlator
(relevant for one-prong quark/gluon discrimination [8]):

ð58Þ

which has a naive scaling of OðM2Þ.
We can see the significant benefit of linear computational

complexity, resulting in very large practical speedups for
realistic numbers of particles at the LHC (i.e., 100–1000).
Furthermore, this opens the door to the use of higher-N
correlators for collider physics, which until now have
appeared computationally prohibitive. The OðMÞ imple-
mentations of all these observables are available in the
ENERGYFLOW PYTHON package [15].

FIG. 1. Compute time (in seconds) for three jet substructure

observables: Cðβ¼2Þ
3 [naively OðM4Þ], Dðβ¼2Þ

2 [naively OðM3Þ],
and Cðβ¼2Þ

1 [naivelyOðM2Þ] on an Intel Xeon 2.0 GHz processor.
The observables are computed for different numbers of particles
by (dashed lines) evaluating the nested sums and (solid lines)
using the moment-based approach developed here. The fast
matrix multiplication approach using Strassen’s algorithm (dotted
line) is also used to compute D2. The moment strategy shows the
expected linear scaling across all observables.
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VII. CONCLUSIONS

A greater understanding of multiparticle correlators has
profound implications for fields ranging from physics to
applied mathematics. In this paper, we have investigated
multiparticle correlators, attempting to understand and
categorize linear relations that appear among them as well
as developing faster computational techniques to improve
their practical application.
When the summand of a multiparticle correlator satisfies

the monomial form in Eq. (2), the correlator has a multi-
graph structure that enables us to effectively represent and
manipulate it. This was used already in Ref. [9] to apply the
variable elimination algorithm to speed up the computation
of many multiparticle correlators for collider physics
beyond the naive expectation. Here, we have gone signifi-
cantly further by developing techniques to “cut” the
multigraph vertices and edges.
By slicing open the vertices of correlator graphs, we have

arrived at particle tensors and demonstrated that each
correlator can be written as a contraction of these tensors.
The fundamental tensor antisymmetrization identity in
Eq. (3) resulted in an infinite class of linear relations that
hold when the number of particles M is small compared to
the number of vertices N. The existence of faster-than-
expected tensor operations, such as fast matrix multiplica-
tion, has allowed us to reduce the computational complexity
of correlators in general. These computational and con-
ceptual strategies extend beyond correlators with monomial
summands, applying also to noninteger exponents or indeed
products of any pairwise interparticle quantities.
We have also sliced open the edges of the multigraphs

when the pairwise distances had the inner product structure
of Eq. (4). This assumption holds for kinematic polyno-
mials as well as for EFPs with β ¼ 2 in both the eþe− and
hadron collider contexts. Cutting the edges has resulted in
moment tensors that carry the indices of the inner product
space. Applying the tensor antisymmetrization identity has
led to another infinite class of linear relations arising when
the dimensionality of the inner product space (e.g., four
spacetime dimensions) is small compared to the number of
edges d. We have also made contact with efforts to
analytically enumerate structures appearing in superstring
amplitudes, deriving a method that has allowed us to
significantly extend previous results.
In a collider context, the moment tensors yield the EFMs.

The EFMs are novel tensorial structures that provide a
natural and efficient way to compute collider correlators,
unifying and encompassing existing moment-based
approaches in the collider physics literature. We have
demonstrated a significant speedup of widely used jet
substructure observables using the graphical techniques
that we have developed. We expect that the EFMs will be a
useful development for experimental applications and
theoretical calculations of multiparticle correlators in col-
lider physics.
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APPENDIX: EUCLIDEAN SLICING
LINEAR RELATIONS

In this appendix, we derive linear relations for the
generalized sphericity tensors in Eq. (49), and show how
they can be used to constrain β ¼ 2 EFPs in eþe−
collisions. The generalized sphericity tensors appear in
the spatial parts of EFMs. For example, the rank-2 tensors
are related by

I00¼2; I0i¼I i0¼
ffiffiffi
2

p
I i¼2Θi; I ij¼2Θij: ðA1Þ

For massless particles in eþe− collisions, the EFP measure
in Eq. (14) has the property that all nμi take the special form
nμi ¼ ð1; n̂Þμ. The appearance of 1 in the zeroth component
is the reason why relations such as I i0 ¼ ffiffiffi

2
p

I i exist. In
general, we have “subslicing” relations of the form

I0μ1���μv ¼
ffiffiffi
2

p
Iμ1���μv : ðA2Þ

Since the Θ tensors live in three dimensions, they satisfy
finite-dimensional tensor identities involving antisymmet-
rization over four or more indices, i.e., one fewer than the
four-dimensional EFMs. Since any EFM for eþe− colli-
sions can be written in terms of the Θ tensors, these
redundancies carry over and manifest as new EFM rela-
tions. We showcase several specific examples of these
identities in this appendix.
To begin, we introduce a graphical notation to keep track

of the different contractions of the sphericity tensors, in
analogy with the graphs for EFMs. Explicitly, the graphical
rules are

ðA3Þ

ðA4Þ
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For instance, the square graph has the following meaning in
terms of the sphericity tensor:

ðA5Þ

Note that Tr½Θ2� ¼ 1, and the factors of 2 come from the
spatial part of our 2δab convention. In general, the traces of
powers of Θ2 give rise to 2-regular graphs.
Next, we apply the 3 × 3 Cayley-Hamilton theorem from

Eq. (36) to Θ2. Multiplying Eq. (36) through by Θ2, we
have

Θ4
2 − Θ3

2 þ
1

2
ð1 − trΘ2

2ÞΘ2
2 − Θ2 det Θ2 ¼ 0: ðA6Þ

Substituting in for the det Θ2 [from tracing over Eq. (36)]
and taking the trace of this expression gives rise to one
identity. Multiplying Eq. (36) on both sides byΘ1 gives rise
to a separate identity. These two identities are

ðA7Þ

ðA8Þ

In this analysis, we used a Cayley-Hamilton approach for
simplicity. In general, these graphical identities can be
systematically derived from the tensor antisymmetrization
identity in Eq. (3) by enumerating the possible antisym-
metrizations (here, over four or more indices) of each graph
structure.
To translate these identities among sphericity tensors into

identities among EFPs, we develop a look-up table which
writes out each contraction of sphericity tensors as a
specific linear combination of EFPs. This can be worked
out in the moment picture by recursively writing a
Lorentzian contraction as a Euclidean contraction plus
an additional term of opposite sign (with the appropriate
factors of 2). Our results are summarized in Table V for all

graphs up through the connected graphs with four edges.
With this table, we can quickly translate between the
sphericity and energy flow pictures. As an example, the
identities in Eqs. (A7) and (A8) give rise to the following
identities among the EFPs:

ðA9Þ

ðA10Þ

Hence the finite dimension identities of the three-dimensional
sphericity tensor induce related identities among the EFPs,
with an interesting interplay between dimensionalities.
We can use similar reasoning to make contact with the C

and D parameters. From Eq. (51), these event shapes
are related to the trace and determinant of the sphericity
tensor via C ¼ 3

2
ððtrΘÞ2 − trΘ2Þ and D ¼ 27 det Θ. Using

Eq. (36) to express the determinant ofΘ, we can write these
observables in terms of the sphericity graphs in the
following way:

ðA11Þ

ðA12Þ

We can use Table V to translate Eqs. (A11) and (A12) into
the energy flow picture. Doing so yields the EFP expres-
sions for the C and D parameters already presented in
Eqs. (52) and (53).
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TABLE V. All contractions of generalized sphericity tensors (left column) as linear combinations of EFPs (top row). The entries of the table
are the specific linear coefficients of each EFP for a particular sphericity contraction. This table can be used to translate between linear
combinations of sphericity contractions and EFPs bymatrix multiplication. Shown are all graphs up to the connected graphs with five edges,
though in principle it can be extendedarbitrarily.Note that a single diagonal of ones continues for thed ¼ 4graphs and is not shownexplicitly.

d ¼ 0 d ¼ 1 d ¼ 2 d ¼ 3

� � �
1
2 −1

4 −4 1

4 −4 1

4 −4 1

8 −12 6 −1

8 −12 6 −1

8 −12 2 4 −1

8 −12 6 −1

8 −12 4 2 −1

8 −12 2 4 −1

8 −12 2 4 −1

8 −12 6 −1

16 −32 24 −8 1

16 −32 8 16 −8

16 −32 4 20 −4 −4

16 −32 12 12 −2 −6

16 −32 16 8 −8

16 −32 20 4 −2 −2 −4
16 −32 4 16 4 −4 −4

16 −32 4 12 8 −2 −4 −2

16 −32 4 20 −4 −4
16 −32 24 −8
16 −32 16 8 −2 −4 −2

16 −32 12 12 −4 −4

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .
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