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Analytic expressions for the potentials and fields of flat and cylindrical plates, including the fringe fields,
are given. The present analysis extends and simplifies the current expression for the fields of flat plates
and develops expressions for the fringe fields of cylindrical plates in terms of polar coordinates. The
development of a FORTRAN program to output the field strength at a given location within the Proton
Electric Dipole Moment (Proton EDM) ring is then described. Fourth-order Runge-Kutta integration is
used to investigate the effect of fringe fields on particle and spin dynamics with precision tracking in the
proposed Proton EDM experiment.
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I. INTRODUCTION

Fringe fields are often neglected in analysis of electro-
static configurations. The hard-edge approximation that is
often used accounts for the energy change of a particle
through the fringe region and does not include the fringe
fields themselves. However, this cannot be the full story
since the hard-edge fields are not solutions to the Maxwell
equations for the given system.
To fully account for the effect of fringe fields, an analytic

expression for the fringe electric fields is crucial. We begin
with the studied case of the fringe fields near flat electrode
plates, and then we discuss the results extended to
cylindrical electrodes using conformal mappings consistent
with the cylindrical geometry.
We take the problems to be two-dimensional, with the

plates extending infinitely far in the third direction. We
arrive at analytic expressions for the fringe fields of finite
flat and cylindrical plates, which we then simplify through
the introduction of several complex functions.
Finally, we describe the implementation of the math-

ematical expressions of the fringe fields into a FORTRAN

tracking program using fourth-order Runge-Kutta integra-
tion. We intend for this to become a valuable tool in
accurately determining the effects of fringe fields on
particle and spin dynamics in the fringe regions through
precision tracking.

II. FLAT PLATES

The first analysis of fringe fields of finite flat plates was
done by Maxwell [1]. An implicit mapping defines the
electric field at the fringes of flat plates charged atþV0 and
−V0, namely,

x¼ d
2π

ðuþ1þeu cosvÞ; y¼ d
2π

ðvþeu sinvÞ; ð1Þ

where v ∈ ð−π; πÞ and u ∈ ð−∞;∞Þ, and d is the spacing
between the plates. The direction perpendicular to the
plates is the y direction, and the longitudinal direction is the
x direction.
Using this parametric definition, the implicitly defined

coordinate vðx; yÞ is the normalized potential such that
vðx; yÞ ¼ πVðx; yÞ=V0. The uniqueness theorem then guar-
antees that the electric field must follow from this potential.
The resulting transverse field Ey and longitudinal field

Ex are given by the following expressions:

Ex ¼
2V0

d
eu sin v

ð1þ 2eu cos vþ e2uÞ ; ð2Þ

Ey ¼ −
2V0

d
1þ eu cos v

ð1þ 2eu cos vþ e2uÞ : ð3Þ

The two electric field components can be expressed as
Ex ¼ E sinϕ and Ey ¼ E cosϕ, where

E ¼ −
2V0

d
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2eu cos vþ e2u
p ð4Þ

and
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ϕ ¼ arctan

�∂x
∂v
∂y
∂v

�
¼ arctan

�
−eu sin v

1þ eu cos v

�
: ð5Þ

Fixing v and varying u gives a parametric method of
plotting equipotential lines from the analytic expression.
Figure 1 demonstrates the equipotential lines for evenly
spaced potentials between þV0 and −V0 using the implicit
functions given above.
Thus we have determined the expressions for the radial

and longitudinal fields, Ex and Ey, of flat parallel plates in
terms of u and v. The resulting electric field is shown
in Fig. 2.

III. CYLINDRICAL PLATES

Doskeyev et al. [2] in 2011 gave similar implicit analytic
mappings for finite cylindrical plates that terminate at
ψ ¼ 0, neglecting the other end. Given in cylindrical

coordinates ðρ;ψÞ concentric with the plates, the expres-
sions are

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
exp

�
1

2π
ln
R2

R1

ðeu sin vþ vÞ
�
; ð6Þ

ψ ¼ 1

2π
ln
R2

R1

ð1þ eu cos vþ uÞ; ð7Þ

where v ∈ ð−π; πÞ and u ∈ ð−∞;∞Þ, and R1 and R2 are
the inner and outer radii, respectively. Using this parametric
definition, the equipotential lines for an illustrative case
of deflectors forming a half circle were plotted using
Mathematica. Figure 3 depicts the equipotential lines for
evenly spaced potentials between þV0 and −V0 for the
cylindrical plates. The two cylindrical ends were taken to
be sufficiently far apart so that the solutions for each end
could be added directly.
At v ¼ �π we have that ρ ¼ R1 or ρ ¼ R2, and ψ ranges

over ψ ≤ 0 as u ranges from −∞ to þ∞. These conditions
give the correct equipotential geometry for þV0 on the
outer plate and −V0 on the inner plate, and we see that
∇2v ¼ 0 by implicitly differentiating. This check can be
done by confirming that u and v satisfy the Cauchy-
Riemann conditions and thus Laplace’s equation [3]. The
uniqueness theorem thus guarantees that Vðρ;ψÞ ¼
V0

π vðρ;ψÞ is the potential for the cylindrical plate configu-
ration, giving the desired fringe fields.
From this, the electric field can be found by implicitly

differentiating, yielding

~E ¼ −∇V ¼ −
V0

π

�∂v
∂ρ ;

1

ρ

∂v
∂ψ

�
: ð8Þ

With this method, we can determine the two components
of the electric field, Eρ and Eϕ. Differentiating the potential
gives

x

y

FIG. 1. Equipotential lines, equally spaced in voltage, at the
fringes of flat parallel plates.

FIG. 2. The magnitude of the electric field jEj between
finite parallel flat plates. The x and y directions are spatial
dimensions and the vertical represents the electric field
strength.

FIG. 3. Equipotential lines, equally spaced in voltage, of
concentric semicircles found using the methods mentioned [2]
for cylindrical plates by reflecting about the vertical axis. Figure
shown is for semicircular plates where R2=R1 ¼ 2.
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Eρ ¼ −
2V0ð1þ eu cos vÞ exp ½− 1

2π ln
R2

R1
ðeu sin vþ vÞ�

lnðR2

R1
Þ ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p ð1þ 2eu cos vþ e2uÞ;
ð9Þ

Eψ ¼
2V0eu sin v exp ½− 1

2π ln
R2

R1
ðeu sin vþ vÞ�

lnðR2

R1
Þ ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p ð1þ 2eu cos vþ e2uÞ : ð10Þ

The expressions above can be represented, like the field
expressions for the flat plates, in a further simplified form.
We take E to be the negatively signed magnitude of the
electric field:

E ¼ −
2V0 exp ½− 1

2π ln
R2

R1
ðeu sin vþ vÞ�

lnðR2

R1
Þ ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2eu cos vþ e2u

p : ð11Þ

Then the two components of the field can be written in
the following way:

Eρ ¼ E cosϕ; ð12Þ

Eψ ¼ E sinϕ; ð13Þ

where

ϕ ¼ arctan

�
−eu sin v

1þ eu cos v

�
: ð14Þ

Thus we have determined the electric field components
Eρ and Eψ of cylindrical parallel plates in terms of u and v.
The field expressions can be used to determine particle
dynamics through the fringe electric field regions for the

Proton Electric Dipole Moment (EDM) experiment through
precision tracking.
A graph of the electric field strength was made using

Mathematica in order to illustrate the above result. The
depiction gives a clearer picture of the equipotential
surfaces as well as of the fringe field strength. The strength
of the fringe electric fields due to finite cylindrical plates is
shown in Fig. 4.
The equipotential surfaces of the cylindrical plates can

be used to shape the end of the cylindrical plates of the
Proton EDM experiment, similar to the Rogowski profile
[4] used for flat plates. The analytic expressions of these
surfaces are given in this section parametrically.

IV. COORDINATE MAPPING INVERSION

The coordinate mapping that gives u and v is illustrated
in Fig. 5. The circulating lines represent lines of constant v
and the lines that end normal to the cylindrical plates
represent lines of constant u.
To invert this mapping, first we establish the equivalence

of the ðx; yÞ and ðρ;ψÞ mappings in terms of u and v by
noting that the ðψ ; ln½ρ= ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p �Þ mapping is equivalent to
the ðx; yÞ mapping up to a scaling constant. Thus we will
invert the ðx; yÞmapping, which will then be simply related
to the ðρ;ψÞ mapping.
We define z ¼ xþ iy and w ¼ uþ iv. Multiplying the y

expression in Eq. (1) by i and adding it to the x expression
yields

FIG. 4. The magnitude of the electric field jEj between finite
cylindrical plates. The x and y directions are spatial dimensions
and the vertical represents the electric field strength. The standard
field between the cylindrical shells is shown in the back, with the
fringe effect occurring at the front of the image.
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FIG. 5. Lines of equally spaced constant u and v values of
the cylindrical coordinate mapping for radii R1 ¼
0.5 m and R2 ¼ 3.0 m.
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z ¼ d
ð2πÞ ð1þ wþ ewÞ: ð15Þ

Using the condition that −π < v < π, this equation can
be solved for w as

w ¼ −1þ 2π

d
z −WκðzÞ

�
exp

�
−1þ 2π

d
z

��
; ð16Þ

whereWκðzÞ is the κðzÞ ¼ ⌈ ℑð2πd zÞ−π
2π ⌉ branch of the Lambert

W function [5] defined so that z ¼ WðzÞ exp½WðzÞ�. ⌈z⌉ is
the ceiling function and ℑðzÞ takes the imaginary part of the
argument. Henceforth, we will write WκðzÞ ≡W.
Taking real and imaginary parts gives the desired

expressions for uðx; yÞ and vðx; yÞ for the flat finite plates,
namely,

u ¼ −1þ 2π

d
x −ℜ

�
W

�
exp

�
−1þ 2π

d
ðxþ iyÞ

���
;

ð17Þ

v ¼ 2π

d
y − ℑ

�
W

�
exp

�
−1þ 2π

d
ðxþ iyÞ

���
; ð18Þ

where ℜ takes the real part and ℑ takes the imaginary part
of the argument.
Now we solve for uðρ;ψÞ and vðρ;ψÞ in the same way

through the equivalence described above. We thus arrive at
the u and v expressions for the finite cylindrical plates:

u ¼ ℜ

�
−1þ 2πz

lnðR2

R1
Þ −W

�
exp

�
−1þ 2πz

lnðR2

R1
Þ

���
; ð19Þ

v ¼ ℑ

�
−1þ 2πz

lnðR2

R1
Þ −W

�
exp

�
−1þ 2πz

lnðR2

R1
Þ

���
; ð20Þ

where z ¼ ψ þ i lnðρ= ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p Þ and the branch of the
Lambert W function is κðzÞ ¼ ⌈½ℑð 2πz

lnðR2=R1ÞÞ − π�=2π⌉.
Thus we have extended the expression for the electric

field of finite cylindrical plates to a closed form in
cylindrical coordinates by substituting u and v in Eρ and
Eψ . These expressions were checked graphically and
analytically for both the flat and cylindrical geometries.

V. PROTON EDM EXPERIMENT

A. Proton EDM geometry

The Proton EDM experiment [6] proposes to measure
the electric dipole moment of the proton with a sensitivity
of 10−29 e · cm. The design uses protons at the magic
momentum of p0 ¼ 0.7 GeV=c in an all-electric storage
ring with a momentum spread of ðdp=p0Þrms ¼ 10−4.
The Proton EDM storage ring geometry [6], shown in

Fig. 6, consists of 16 sections of concentric cylindrical

deflectors of radii R1 and R2 each spanning 2π=16 − 2θ rad
separated by straight sections of length l. The outer
circumference of the lattice is then 2πR2 þ 16l. The
currently considered parameters used in the following
analysis are R1¼39.985m, R2¼40.015m, and l¼2.0m.
The potentials on the plates are chosen such that the electric
field is 10.5 MV=m exactly between the two plates.
The geometry is treated as two dimensional, neglecting

the vertical dimension. In the Proton EDM experiment,
vertical focusing will be provided by electrostatic quadru-
poles in the straight sections. The quadrupoles are not
included in the simulation since the vertical dimension of
the problem is neglected. The tracking simulation focuses
on the effects of the fringe fields of the deflectors.
An important feature of the geometry is its reflectional

symmetry. The origin of coordinates is chosen to be at the
center of the ring. The fringe regions of interest occur at
the ends of the deflectors. The expressions for the electric
field of the deflectors, developed in the previous section,
were applied to determine the electric field at all points in
the ring.

B. Program implementation

The LambertW function is implemented by a convergent
sequence defined by Halley’s method [7] that converges to
WκðzÞðzÞ for a given z. The sequence used takes the form

wnþ1 ¼ wn −
wnewn − z

ewnðwn þ 1Þ − ðwnþ2Þðwnewn−zÞ
2wnþ2

: ð21Þ

In the expressions for u and v occurs the term
Wfexp½−1þ 2πz= lnðR2=R1Þ�g. Analytically, there is no
trouble in working with that term. However, ℜðzÞ > 1000

FIG. 6. The Proton EDM storage ring geometry. The ring
consists of 16 sections of concentric cylindrical deflectors
separated by some distance l. Each section spans 2π=16 − 2θ
radians. The fringe effects occur near the ends of the deflectors.
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risks overflow in computation and limits the utility of the
analytic mapping. This issue motivates the introduction of
another function.
The Wright ω function [8] is defined such that

ωðzÞ ¼ WκðzÞðexpðzÞÞ; ð22Þ

where the branch is κðzÞ ¼ ⌈ðℑðzÞ − πÞ=2π⌉.
If we define s ¼ −1þ 2πz= lnðR2=R1Þ, then using the ω

function, u and v become

u ¼ ℜ½s − ωðsÞ�; ð23Þ
v ¼ ℑ½s − ωðsÞ�: ð24Þ

Using the ω function circumvents the detour through
troublingly large numbers. To implement ω programmati-
cally, a convergent sequence based on Newton’s method [9]
is used, given by

wnþ1 ¼ wn −
wn þ lnðwnÞ − z

1þ 1
wn

: ð25Þ

Calculating ωðsÞ for ℜðzÞ < −1000 risks underflow.
Thus, when calculating u and v, the following functions are
used:

W½expðsÞ� if ψ < 0 and R1 ≤ ρ ≤ R2; ð26Þ
ωðsÞ otherwise: ð27Þ

To ensure that the correct κðzÞ branch ofW is chosen, we
check that the resulting value satisfies the relation [10]:

WκðzÞ þ ln½WκðzÞ� ¼ lnðzÞ þ 2πiκ; ð28Þ
unless κ ¼ −1, z ∈ R, and −e−1 ≤ z < 0, in which
case WκðzÞ þ ln½WκðzÞ� ¼ lnðzÞ.
By the symmetry of the Proton EDM experiment

geometry, the electric field due to each plate can be
calculated individually and the total field can be found
by reflecting and rotating accordingly. The spacing is
sufficiently large so that the fields of each of the deflector
sections can be added directly. The electric field perpen-
dicularity to the plates varies by less than 60 μrad as a result
of this addition.
With the LambertW and Wright ω functions defined and

the electric field expressions determined in the previous
sections, the electric field can be calculated analytically for
any point in the ring.

C. Particle tracking results

Precision tracking simulations of the Proton EDM lattice
using fourth-order Runge-Kutta integration with a step size
of 1–10 ps were done recently by Hacıömeroğlu and
Semertzidis [11,12] neglecting the deflector fringe fields

and instead using a hard-edge approximation. We imple-
mented a tracking program to account for the fringe effects
of the deflectors.
For a particle of massm and charge e, the two differential

equations governing particle and spin dynamics for
~β ¼ ~v=c and spin ~s in external electric and magnetic fields
are [13]

d~β
dt

¼ e
mγc

½~Eþ c~β × ~B − ~βð~β · ~EÞ�; ð29Þ

and the generalized T-BMT equation [14], allowing for a
nonzero η, which plays the same role for an electric dipole
moment as g for a magnetic dipole moment, and anomalous
magnetic moment a:

d~s
dt

¼ e
m
~s
��

aþ 1

γ

�
~B−

aγ
γþ 1

~βð~β · ~BÞ−
�
aþ 1

γþ 1

� ~β× ~E
c

þ η

2

�~E
c
þ ~β× ~B−

γ

γþ 1

~βð~β · ~EÞ
c

��
: ð30Þ

For tracking simulations, we set η ¼ 0 and ~B ¼ 0 for an
all-electric ring. Fourth-order Runge-Kutta integration was
used with a step size of 1–10 ps to numerically solve the
two differential equations for a particle in the Proton EDM
ring. Energy is conserved to subpart per million levels over
the duration of the program. Tracking a particle in an ideal
cylindrical ring for 0.2 ms and comparing to analytical
values, we find that the errors in the position dR=R0 and the
momentum dp=p0 were below 10−11 for step sizes ranging
from 1–100 ps.
The introduction of the geometrical quantity θ in the

ring accounts for the deflection of the particles toward the
center by the nonzero deflector fringe fields in the straight
sections. Particles were successfully stored for upwards of
100 turns with a θ value of the ring of θ ¼ 1.0 mrad. Fig. 7
shows the radial oscillations of a stored particle with the
design momentum for the first 15 μs of the run.
An important condition for the Proton EDM experiment

is to have the spin of the particle aligned with its
momentum such that ~s · ~p is constant on average. Using
an angle of θ ¼ 1.0 mrad, the ideal particle was success-
fully stored for more than 100 turns with ~s · ~p constant
on average. The spin coherence time τ is defined to be the
time necessary for the angle between ~s of the ideal particle
and ~srms of the distribution to change by 1 rad. A spin
coherence time above 103 s is within the desired range
of the experiment. Using an ensemble of particles with
ðdp=p0Þrms ¼ 10−4, we estimated that the spin coherence
time in the ring is consistent with a value on the order
of 103 s.
The dynamic aperture of the simulated ring is shown

in Fig. 8 for the θ ¼ 1.0 mrad that maximizes the spin
coherence time of the ideal particle. The aperture illustrates
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the range of radial deviations dR=R0 and momentum
deviations dp=p0 of particles that survived more than
100 turns in the ring. The momentum acceptance of the
lattice including the deflector fringe fields is well suited
to the desired momentum spread ðdp=p0Þrms ¼ 10−4 of the
particles. The dynamic aperture differs only slightly from
the case where fringe fields are neglected. Further, the
phase space of particles in the ring, with values taken at the
center of a deflector region, is shown in Fig. 9.
Additionally, we introduced a realistic 10 cm radio

frequency (rf) cavity in one of the straight sections, with
rf equal to 100 times the cyclotron frequency of the ideal
particle. We used a peak electric field strength of
5.0 MV=m and included the resulting magnetic field.
The rf bucket had a length of 283 cm. The particles
behaved as expected with the introduction of the rf in
the straight section [12], with no noticeable effect due to the
fringe fields.
The present tracking simulation studied the deflector

fringe fields in the context of the Proton EDM geometry.

A more complete simulation of the ring including, among
other effects, the effects of vertical focusing quadrupoles,
alignment tolerances, and counter-rotating particle beams,
will be performed in the future, incorporating the present
procedure for including the fringe fields of the deflector
plates.

FIG. 8. The dynamic aperture of the ring geometry using
R1¼39.985m, R2 ¼ 40.015 m, l ¼ 2.0 m, and θ ¼ 1.0 mrad.
Particles with a momentum deviation dp=p0 and initial position
deviation dR=R0 in the highlighted region survived more than
100 turns in the ring.

FIG. 7. The radial displacement of a proton with the design
momentum around the ring from its hard-edge orbit, starting at an
initial position of 45.029 m using an angle θ ¼ 1.0 mrad. The
oscillations about this radius are shown as a function of time (top)
and of position around the ring (bottom).

FIG. 9. The phase space of particles in the ring, with values
taken at the center of a deflector region, with R1 ¼ 39.985 m,
R2 ¼ 40.015 m, l ¼ 2.0 m, and θ ¼ 1.0 mrad. The origin of
coordinates is taken to be the geometrically central orbit.
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VI. CONCLUSIONS

We have presented an analytic expression for the fringe
fields at the end of semi-infinite cylindrical plates extend-
ing infinitely in the z direction in cylindrical coordinates.
The implicitly defined u and v expressions themselves
have utility, with ½ρðu; vÞ;ψðu; vÞ� equipotential lines
giving the exact form for Rogowski-profile plates for
cylindrical deflectors for any fixed v value.
Precision tracking simulations using the fourth-order

Runge-Kuttamethod yield that it is possible to store a particle
in the Proton EDM deflector geometry of the Proton EDM
ring with the spin frozen along the momentum direction, as
necessary. The revision of the Proton EDM lattice geometry
with40mbending radius to include the angleθ ¼ 1.0 mrad is
suggested. A sufficient dynamic aperture and spin coherence
time were found with an rf cavity introduced into a straight
section. Thus, we have confirmed the feasibility of the
proposed model Proton EDM geometry including the fringe
electric fields of the deflector plates.
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