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ABSTRACT: We establish that many fundamental concepts and techniques in quantum field
theory and collider physics can be naturally understood and unified through a simple new
geometric language. The idea is to equip the space of collider events with a metric, from
which other geometric objects can be rigorously defined. Our analysis is based on the energy
mover’s distance, which quantifies the “work” required to rearrange one event into another.
This metric, which operates purely at the level of observable energy flow information, allows
for a clarified definition of infrared and collinear safety and related concepts. A number
of well-known collider observables can be exactly cast as the minimum distance between
an event and various manifolds in this space. Jet definitions, such as exclusive cone and
sequential recombination algorithms, can be directly derived by finding the closest few-
particle approximation to the event. Several area- and constituent-based pileup mitigation
strategies are naturally expressed in this formalism as well. Finally, we lift our reasoning
to develop a precise distance between theories, which are treated as collections of events
weighted by cross sections. In all of these various cases, a better understanding of existing
methods in our geometric language suggests interesting new ideas and generalizations.
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1 Introduction

Unification of ideas in physics has been an important way of achieving elegance, clarity,
and simplicity, which in turn helps inspire meaningful new developments. In this paper,
we use the energy mover’s distance (EMD) between collider events [1] to provide a natu-
ral geometric language that unifies many important concepts and techniques in quantum
field theory and collider physics from the past five decades. Furthermore, we introduce
and discuss several new ideas inspired by this geometric approach to studying the space
of events.

Throughout this paper, we refer to an event and its energy flow interchangeably. The
energy flow, or distribution of energy, is the kinematic information that is experimentally
observable and perturbatively well-defined in quantum field theories with massless parti-
cles [2]. As it relates to collider physics, the energy flow has been extensively studied [2-17],
and this paper builds on many of these previous concepts. For an event consisting of M
particles with positive energies E; and angular directions 7n;, the energy flow is:

M
=Y E;id(h— ). (1.1)
=1

Note that the energy flow is insensitive to charge and flavor information. Particles are
taken to be massless in the body of this paper, with nf = (1,7;)* = p!'/E;, and the
case of massive particles is discussed in appendix A. In a hadron collider context, particle
transverse momenta pr; are typically used in place of particle energies, but we focus on
energies in this paper to minimize extraneous notation.

The EMD was introduced in ref. [1] as a metric between events. It is based on the
well-known earth mover’s distance [18-22], also known as the Wasserstein metric [23, 24].
Intuitively, the EMD between two events is the amount of “work” required to rearrange
one event to the other. Its value can be obtained by solving the following optimal transport
problem between energy flows £ and £’

Jé] M M’
EMDg z(£,€') = min ZZfU< ) +DE - E), (1.2)
=1 7=1

{f”>0}z 1j=1
M M’ M M
S fii<E;R > fii<E, ). fij=min (ZEZ, ZE’) (1.3)
i=1 j=1 =1 j=1

where 0;; is a pairwise distance between particles known as the ground metric, R > 0 is
a parameter controlling the tradeoff between transporting energy and destroying it, and
f > 0 is an angular weighting exponent.! For the angular metric between two massless

!Strictly speaking, for the case of 8 > 1, one must raise the first term in eq. (1.2) to the 1/8 power for the
EMD to be a proper metric satisfying the triangle inequality, in which case it is known as a p-Wasserstein
metric with p = 8. Additionally, 2R should be larger than or equal to the maximum distance in the ground
space for the EMD to satisfy the triangle inequality. When written without subscripts, EMD(&, £’) refers
to the case of 8 = 1 and a sufficiently large R to ensure that we have a proper metric. Even if the EMD is
not a proper metric, though, it is still a valid optimal transport problem for any positive values of 8 and R.



Figure 1. An illustration of the space of events. Each point in the space is a collider event consisting
of the particles produced in a collision, as indicated by the blue event. The distance between events
is quantified by the EMD, giving rise to a metric space. Geometry in this abstract space of events
provides a natural language to understand many ideas and developments in quantum field theory
and collider physics.

particles, we focus on the case of

bi; = \/Qné‘nju =1/2(1 —ny; - ny), (1.4)

which reduces to their opening angle in the nearby limit.? The first term in eq. (1.2)
quantifies the difference in radiation patterns while the second term, which vanishes in
the case of normalized energy flows, allows for the comparison of events with different
total energies. The constraints in eq. (1.3) specify that the amount of energy moved to or
from a particle cannot exceed its initial energy, and that as much energy must be moved
as possible.

The EMD has previously been used to bound modifications to infrared- and collinear-
safe (IRC-safe) observables, distinguish different types of jets, and enable visualizations of
the space of events [1]. It has also been used to explore the space of jets and quantify detec-
tor effects with CMS Open Data from the Large Hadron Collider (LHC) [25]. Alternative
pairwise event distances were considered in ref. [26] in the context of new physics searches.
Here, we demonstrate that the EMD can be used to clarify numerous concepts throughout
quantum field theory and collider physics using a unified language of event space geometry.

2Many modifications to this EMD definition are possible, including alternative angular distances such as
strict opening angle or rapidity-azimuth distance as well as alternative notions of energy such as transverse
momentum. In addition, energies can be normalized by dividing by their total scalar sum so that energy
flows become proper probability distributions. If desired, the EMD in the center-of-mass frame can be
phrased in a manifestly Lorentz-invariant way by replacing the particle energies E; with p!' P, /+/P,PH,
where P, is the total event four-momentum.



In addition to demonstrating how concepts such as IRC safety, observables, jet finding, and
pileup subtraction are related, we will develop new ideas and techniques in each of these
areas, which we describe below.

Equipping collider events with a metric allows us to explore interesting geometric and
topological ideas in the space of events. Figure 1 illustrates the space of events with the
EMD as a metric. One key construction for relating these concepts is the notion of a
manifold in the space of events, which will allow us to define the distance between an
event and a manifold, as well as the point of closest approach on a manifold. Since fixed-
order perturbation theory works with a definite number of particles, an important type of
manifold will be the idealized massless N-particle manifold:

N
Py = {ZEié(ﬁ—ﬁi)
=1

which, intuitively, is the set of all possible events with N massless particles. Note that
Pn D Pn_1 D ---Py D P1 D Py via soft and collinear limits, so that the idealized N-
particle manifold contains each manifold of smaller particle multiplicity.

E; > o}, (1.5)

The key concepts unified in this paper are outlined and summarized in table 1. In
section 2, we discuss observables as functions defined on event radiation patterns and
IRC safety as smoothness in the space of energy flows. Colloquially, the label “IRC safe”
indicates that an observable should be well-defined and calculable in perturbation the-
ory [27, 28] due to its robustness to long-distance effects (e.g. hadronization in the case
of QCD). This “perturbatively accessible” IRC safety is traditionally connected to the ob-
servable being “insensitive” to the addition of low energy particles or collinear splittings
of particles [29-36]. Here, we refine the definition of IRC safety and clarify when disconti-
nuities in an observable spoil its perturbative calculability. Critical to our formulation is
the notion of continuity with respect to the metric topology provided by the EMD:

Definition 1. An observable O is EMD continuous at an event & if, for any € > 0, there
exists a & > 0 such that for all events &':

EMD(E, &) <5 = |OE) - O(E)] <e (1.6)

We argue that IRC safety is EMD continuity everywhere except a negligible set of events,
where a negligible set is one that contains no EMD balls of non-zero radius. Using the
EMD provides a definition of IRC safety that does not refer to particles directly, which
circumvents many pathologies of previous definitions. We argue that observables that
are calculable in fixed-order perturbation are exactly those that satisfy a slightly stronger
continuity condition known as Hoélder continuity [62, 63], which restricts the types of di-
vergences that can appear in the distribution of an observable [32, 36]. Fascinatingly,
this framework naturally accommodates Sudakov-safe observables [37-39] as those that
are IRC safe but fail to satisfy EMD Holder continuity on a non-negligible subset of some
Pn (where a non-negligible subset of Py is one that has measure in Py). This suggests, in
agreement with ref. [39], that Sudakov safe observables are indeed perturbatively calculable
once properly regulated.



Section Concept Equation Illustration

2 Infrared and EMD(E, &) < § = AT
Collinear Safety |O(E&) —O(E&N] <€ ‘l *’*‘
[27-39] N/
0
Ob bl = min EMD !
3 servables &) Juin, (&,&) *O
3.1 Event Shapes [40-45] i
3.2 Jet Shapes [46-48|
4 Jets J(€) = argmin EMD(E, 7) e
JEPN
4.1 Cone Finding [49, 50] M
4.2 Seq. Rec. [51-54]
Py
. . B : , Q
5 Pileup Subtraction | £c(&, p) = argmin EMD(E,E" 4 pU)
£e
[55-61]
N
6 Theory Space TE) = Zai 5(E - &)
i=1

Table 1. Concepts from quantum field theory and collider physics, unified in this paper as geometric
and topological constructions in the space of events. In section 2, IRC safety is identified as
continuity in this space. In section 3, many classic collider observables are shown to be the shortest
distance between the event and a manifold of events. In section 4, popular jet algorithms are
derived by projecting the event onto manifolds of N-particle events. In section 5, common pileup
mitigation strategies are cast as transporting away uniform radiation. In section 6, a space of
theories is developed using a distance between event distributions.

In section 3, we highlight that many well-known collider observables can be viewed as
the distance of closest approach between an event and a manifold of events. Many of the
observables we consider can be exactly cast as:

O(E) = min EMD £ & 1.7
(€) Juin 8,r(E,E), (1.7)

for particular choices of the manifold M and parameters 8 and R. Observables that have



the form of eq. (1.7) include thrust [40, 41], spherocity [42], (recoil-free) broadening [43], and
N-jettiness [44]. Particularly interesting is the event isotropy, recently proposed in ref. [45],
which was inspired by EMD geometry and is directly based on optimal transport. This
geometric framework also includes jet substructure observables such as jet angularities [46]
and N-subjettiness [47, 48].

In section 4, we demonstrate how jet finding can be phrased in our geometric language.
Intuitively, a jet algorithm “approximates” an M-particle event with N < M objects called
jets. To phrase this geometrically, we are interested in the point of closest approach in Py
to our event, allowing us to define jets as:

J(€) = argmin EMDg r(€,J), (1.8)
JEPN

where J is the collection of N jets corresponding to the event £. Many common jet finding
algorithms can be derived in full detail from eq. (1.8). For instance, we show that jets
defined by eq. (1.8) are precisely those found by XCone [49, 50], where /3 is the angular
weighting exponent and R is the jet radius. Also, several popular sequential clustering
algorithms and recombination schemes, such as kr clustering [51, 52] with winner-take-all
recombination [43, 53, 54], can be exactly obtained by iterating eq. (1.8) with N = M —1
for various B. It is satisfying that a rich diversity of jet algorithms can be concisely encoded
using event geometry, and we find that several new schemes not previously appearing in
the literature naturally emerge.

In section 5, we connect several pileup mitigation strategies to optimal transport
through the EMD. There is a long-established relationship between pileup subtraction
and geometric concepts [55—61]. Since pileup is reasonably modeled as uniform contami-
nation in rapidity and azimuth [60], we phrase pileup subtraction as removing a uniform
distribution of radiation from the event using optimal transport. Intuitively, pileup miti-
gation finds the event that, when combined with an amount p of uniform radiation U, is
closest to the given event:

Ec (&, p) = argmin EMDg(E, & + pU), (1.9)
Eeq)

yielding the pileup-corrected event £-. Here, 2 refers to the space of all possible energy
flows and EMD g compares events of equal energy, as described at the beginning of section 3.
We demonstrate that Voronoi area subtraction [55, 56] and constituent subtraction [58] can
be phrased exactly as eq. (1.9) in the small-pileup limit. Generalizing this to the large-
pileup limit, we develop two new pileup subtraction schemes, Apollonius subtraction and
iterated Voronoi subtraction, and discuss their prospects and potential advantages.

In section 6, we introduce a distance between theories: the cross section mover’s dis-
tance (stylized as ¥XMD, using the typical greek letter for cross section). Here, a “theory”
T is taken to be a distribution over (or collection of) events {&;} weighted by cross sec-
tions {o;}:

N
TE) = 0id(£ - &). (1.10)



Energy Mover’s Distance Cross Section Mover’s Distance
Symbol EMD >MD
Description  Distance between events Distance between theories
Weight Particle energies E; Event cross sections o;
Ground Metric Particle distances 6;; Event distances EMD(&;, &;)

Table 2. Comparing the constructions of EMD and XMD as optimal transport problems. Events
are treated as energy-weighted angular distributions, whereas theories are treated as cross section-
weighted event distributions. This connection allows us to bootstrap the EMD as a ground metric
for the XMD to develop a rigorous notion of theory space.

The XMD is formulated as an optimal transport problem with EMD as the ground metric
and cross sections as the weights. The similarity of the constructions of EMD and ¥XMD
are highlighted in table 2. Interestingly, we connect ¥MD to a recently proposed tech-
nique for probing jet modifications due to the quark-gluon plasma by comparing similar
sets of events between proton-proton and heavy-ion collisions [64]. We also demonstrate
that representative events can be identified by clustering using the >MD, analogously to
how particles are clustered into jets. The XMD provides the foundation for a rigorous
formulation of “theory space”, quantifying how different two theories are based on all of
their physically observable quantities simultaneously.

Our conclusions are presented in section 7, where we also highlight the interesting and
unique interplay between machine learning and the natural sciences in this story.

2 Infrared and collinear safety: smoothness in the space of events

IRC safety is a central notion in collider physics because it indicates when an observable is
robust to long distance effects and hence can be described in perturbation theory [27, 28]
using a combination of fixed-order calculations and resummation. This insensitivity is
frequently connected to the invariance of an observable under certain modifications of the
event, namely soft and collinear splittings [29-31, 33-36].

In this section, we review some of the common mathematical statements of this in-
variance that have appeared in the literature, with the goal of clarifying and categorizing
their implications. We arrive at a simple, unified description of IRC safety and related
concepts (including Sudakov safety) as statements about continuity in the space of energy
flows. In figure 2, we show the breakdown of observables into broad classes according to
our categorization. A few common examples of each category are given in table 3.

2.1 Review of infrared and collinear invariance

The most straightforward statement of IRC invariance is that an observable O is unchanged
under the addition of an exactly zero energy particle or an exactly collinear splitting [33]:

Exact Infrared Invariance: O(pf,...,ph;) = O0ph,pY,...,p5), (2.1)

Exact Collinear Invariance:  O(pf,...,ph;) = OO, (1 = N)pl,....ph)), (2.2)

for any soft momentum p§ and collinear splitting fraction A € [0,1]. These conditions
correctly rule out some observables from having a perturbative description, such as the



Measurable at a collider

f All Observables \
4 )

Defined on Energy Flows

Invariant to exact infrared & collinear emissions everywhere except a negligible set of events

Infrared & Collinear Safe \

EMD continuous everywhere except a negligible set of events

EMD Hélder Continuous ;  Sudakov Safe %
Everywhere invariant to infinitesimal :_ Discontinuous on some .:
K *, N-particle manifolds -

infrared & collinear emissions

Figure 2. An illustration of the set of observables partitioned according to various IRC-invariance
properties. Examples of observables in each category are listed in table 3.

number of particles in an event, which change by a finite amount under any splitting.
Exact IRC invariance, however, is not sufficiently restrictive to guarantee perturbative
calculability of an observable. For instance, the number of calorimeter cells with non-zero
energy is safe according to eqgs. (2.1) and (2.2), though it is highly sensitive to arbitrarily
low-energy effects [69]. Similarly, the pseudo-multiplicity, which we define as the smallest
N that yields zero N-jettiness (see section 3.2.2 below), is unchanged by exact infrared
and collinear emissions,® but is highly sensitive to any emissions at finite energy or angle.

Another common statement of IRC invariance refines the concept by invoking the limit
as particles become soft or collinear [30, 31, 34, 36]:

Near Infrared Invariance: O(pf,...,ph,) = lir% O(eply, v, ..., Ph), (2.3)
€E—r
Near Collinear Invariance: - O(pf, ..., phy) = lim O(Apy, (1= A)pl,....phy).  (24)
Po =P

One issue with this definition is that many reasonable observables that have hard bound-
aries in phase space are excluded, such as jet kinematics due to sensitivity to particles on
a jet boundary. Hybrid definitions mixing exact and near IRC invariance also appear in
the literature but they suffer from the same pathologies. Another issue is that egs. (2.3)
and (2.4) (and also egs. (2.1) and (2.2)) do not guarantee insensitivity to multiple soft or
collinear splittings.

Several of these issues were previously identified in ref. [36], which utilized a limit-
based statement of IRC invariance, recognized the importance of allowing for multiple

3We thank Andrew Larkoski for discussions related to this point.



All Observables Comments

Multiplicity (3, 1) IR unsafe and C unsafe
Momentum Dispersion [65] (3, E?) IR safe but C unsafe
Sphericity Tensor [66] (3, pi'pY) IR safe but C unsafe
Number of Non-Zero Calorimeter Deposits C safe but IR unsafe

Defined on Energy Flows

Pseudo-Multiplicity (min{N | 7x = 0}) Robust to exact IR or C emissions

Infrared & Collinear Safe

Jet Energy (>, E;) Disc. at jet boundary

Heavy Jet Mass [67] Disc. at hemisphere boundary
Soft-Dropped Jet Mass [38, 68] Disc. at grooming threshold
Calorimeter Activity [69] (Nos) Disc. at cell boundary

Sudakov Safe

Groomed Momentum Fraction [39] (z4) Disc. on 1-particle manifold

Jet Angularity Ratios [37] Disc. on 1-particle manifold
N-subjettiness Ratios [47, 48] (Tn+1/7n) Disc. on N-particle manifold

V parameter [36] (eq. (2.11)) Hélder disc. on 3-particle manifold

EMD Hoélder Continuous Everywhere
Thrust [40, 41]

Spherocity [42]

Angularities [70]

N-jettiness [44] (Tw)

C parameter [71-74] Resummation beneficial at C' = 3
Linear Sphericity [72] (3=, Eini'nY)
Energy Correlators [36, 75-77]

Energy Flow Polynomials [15, 17]

Table 3. Examples of well-known collider observables, along with their classification according to
figure 2. The observables satisfy the conditions of all bold-faced categories above them in the table.
Note that via our classification, Sudakov safe observables are IRC safe, since the discontinuities
appear on N-particle manifolds which are negligible sets in the full space.

soft and collinear emissions, and allowed for exceptions on sets of measure zero. Despite
noting that a rigorous mathematical definition of IRC safety would be desirable, ref. [36]
concluded that formulating one without pathologies was challenging and that a satisfactory
definition had not yet been obtained. Here, we explore how the geometric picture provided
by the EMD yields a natural and elegant way to phrase IRC safety and to control these
various subtleties. This builds on the notion of “C-continuity” advocated for in refs. [2, 7],



which argue that the perturbative calculability of C-continuous observables can be seen by
relating the energy flow to the stress-energy tensor of the underlying quantum field theory.

2.2 Infrared and collinear safety in the space of events

The EMD provides a natural language for understanding IRC-safe observables as continu-
ous functions on the space of events. To make this precise, we first must understand which
observables are well-defined functions of the energy flow.

We can show that observables that are defined on all energy flows are precisely those
which have exact IRC invariance according to eqs. (2.1) and (2.2). First, an observable
is well defined on the space of energy flows if its value is the same on events that are
zero EMD apart. The following lemma establishes the remaining connection to exact IRC
invariance.

Lemma 1. Two events are zero EMD apart if and only if they differ by zero energy
emissions or exactly collinear splittings.

Proof. Adding a zero energy particle or a collinear splitting to an event manifestly does
zero energy moving, proving the forward direction. To prove the reverse direction, suppose
that two events are zero EMD apart and take their energy flows to be:

M M’
E() =) Eid(h—n;),  E(h)=> Ejs(h—n). (2.5)
i=1 j=1

Since the EMD is a proper metric between energy flows, the identity of indiscernibles says
that EMD(E(n),£'(R)) = 0 implies £(n) = £'(n). For any direction 7 with at least one
particle, either the sums of energies in that direction are equal between the two events or
the particle has zero energy. In the first case, the events differ by exactly collinear splittings
in that direction, and in the second case they differ by zero energy particles. O

By this lemma we see that exact IRC invariance ensures that we can write O(€) rather
than O(pl,--- ,pYy;) for an observable. As discussed in section 2.1, exact IRC invariance is
insufficient to guarantee IRC safety and we must formulate a stronger condition phrased
in the geometric language of the space of events.

We propose that IRC safety is achieved by requiring an observable to be EMD contin-
uous, in the sense of Definition 1, except possibly on a negligible set of events. We define
a negligible set to be one that contains no EMD ball. The (open) EMD ball B,.(£) around
an event £ is defined as all events within an EMD of r > 0:

B, (€) = {5’ cQ ‘ EMD(E, &) < r} : (2.6)

where Q is the space of all energy flows. Implicit in the above requirement is that an
observable must be well defined on energy flows. Concretely, we state IRC safety as the
following:

Infrared and Collinear Safety. An observable is IRC safe if it is EMD continuous for
all energy flows, except potentially on a negligible set of events.



[ oO— > ()

—c —

Figure 3. An illustration of IRC safety of an observable as continuity in the space of events. As
formulated in eq. (1.6), small perturbations to the event, as measured by EMD, yield small changes
in the observable value.

This new formulation of IRC safety has many aspects of existing ideas of safety dis-
cussed in section 2.2 wrapped into a concise and rigorous statement. It makes mathe-
matically precise the intuitive notion that small perturbations in the energy flow of the
event give rise to small perturbations in the observable. This notion of EMD continuity
for IRC safe observables is illustrated in figure 3. The exception for negligible sets allows
observables to be discontinuous in a way that affords them the opportunity to depend
sharply on phase space but does not spoil their calculability. Calculability is a statement
about integrability, and removing a negligible set of points from an integral cannot change
its value.

To get some familiarity with this definition, consider additive IRC-safe observables,
which are ubiquitous structures [17] that take the form O(€) = Zf\il E; f(n;) for an angular
function f. Omne can prove that they are Lipschitz continuous in the space of events
assuming f is Lipschitz continuous [1], and therefore they naturally satisfy continuity
according to the EMD. As a generalization of additive observables, energy flow networks [16]
are a machine learning architecture that can approximate any IRC-safe observable through
an additive IRC-safe latent space. As long as the activation functions are continuous almost
everywhere, then the final energy flow network output will be IRC safe.

There are also observables that fail the criteria of egs. (2.3) and (2.4) for small sets
of events but are safe according to our definition and are indeed calculable. The energy
of a jet is a simple example where emissions on the jet boundary result in discontinuous
behavior of the observable, but this discontinuity is integrable in fixed-order perturbation
theory. A more complicated example is the invariant mass after soft drop grooming [38, 68]:
for events on the threshold of having an emission dropped, tiny perturbations can give rise

~10 -



to discontinuously large changes in the observable. This issue, however, only occurs on
a negligible set, satisfying our definition of safety and avoiding serious analytic patholo-
gies [78-81]. Piecewise continuity does, however, complicate analyzing the nonperturbative
corrections [82] and detector response [83, 84] of soft-dropped jet mass.

Our definition also includes observables that would sometimes not be called IRC safe
since they do not have a well defined Taylor expansion in the small parameter of the theory
(e.g. as for QCD). These observables are nevertheless perturbatively calculable, though
methods beyond fixed-order perturbation theory may be required. The next subsections are
devoted to exploring which IRC-safe observables are calculable in fixed-order perturbation
theory and which require additional techniques.

2.3 Calculability in fixed-order perturbation theory

IRC safety has long been connected with the notion of calculability order-by-order in
perturbative quantum field theory. However, IRC safety according to our Definition 1
includes observables that are not calculable in fixed-order perturbation theory, which we
explore further in the next subsection. Here, building off the work in refs. [32, 36], we
formulate the stronger notion of EMD Hélder continuity [62, 63] and argue that it is the
appropriate condition to guarantee order-by-order perturbative control:

Definition 2. An observable O is EMD Hélder continuous with exponent o € (0,1] at an
event £ if there exists K > 0 such that for all £ in some neighborhood of & :

10(E) — O] < KEMD(E, £)°. (2.7)

Note that the case of @ = 1 corresponds to Lipschitz continuity at £, and in general we have
containment such that Holder continuity with exponent o implies Holder continuity with
exponent g if § < a. EMD Hélder continuity effectively specifies that the § in Definition 1
is no smaller than e to some power (times a constant) for all points in a neighborhood of
&, and thus it is a stronger requirement than plain EMD continuity.

To connect to fixed-order perturbation theory, we state the following conjecture:

Conjecture 1. An observable is calculable order-by-order in perturbation theory if it is
EMD Hoélder continuous on all but a negligible set of events in each N -particle manifold.

This relation phrases the ideas of ref. [32] and “Version 2” of the IRC safety definition
of ref. [36] in our geometric language via the EMD. While these criteria were originally
formulated for the calculability of moments of an observable, they appear to also extend
to the calculability of distributions of observables [85].

It is possible to demonstrate a precise equivalence between our Conjecture 1 and the
following criteria of ref. [32] regarding when the average value of an observable O is calcu-
lable in fixed-order perturbation theory:

lim O(ﬁh"w@a"wﬁM) - O(ﬁlv 7@—1757?—{-17‘ : 7pM)
1550 Pl
O(ﬁlv"'v@)"'aﬁ}a'--,ﬁM) - O(ﬁla---aﬁ:i +@7'--7@713@+17"'7ﬁM)

li =0, (2.9
ei;glo ij , (2.9)

- 11 -



where the powers a and b are positive and the choices of ¢ and j are arbitrary. Here,
eq. (2.8) is a statement of Holder continuity in the energy of particle i, which implies
ordinary soft safety. Similarly, eq. (2.9) is a statement of Holder continuity in the angular
distance between particles ¢« and j, which implies ordinary collinear safety. In these soft
and collinear limits, EMD(&, ") o« E; and EMD(E, E)  6;; respectively, and so egs. (2.8)
and (2.9) can be phrased compactly as:

0E)-0E) _

gse EMD(E, &) (2.10)

for some positive exponent c¢. This is equivalent to the Holder continuity of the observable
O at £ with some exponent o > ¢, connecting the formulation of ref. [32] to our conjecture.

Our Conjecture 1 also nicely connects to “Version 2”7 of the IRC safety definition in
ref. [36], which we restate here with a suggestive relabeling of the original notation. The
criteria for fixed-order calculability of an observable in ref. [36] are as follows:

Ref. [36]: given almost any fixed set of particles and any value n, then for any
€ > 0, however small, there should exist a § > 0 such that producing n extra
soft or collinear emissions, each emission being at a distance of no more than ¢
from the nearest particle, then the value of the observable does not change by
more than e. Furthermore, there should exist a positive power ¢ such that for
small €, §¢ can always be taken greater than e.

By equipping the space of events with these topological and geometric structures via EMD),
our language provides a natural language to sharply mathematically formulate this discus-
sion. The first sentence can be encoded as EMD continuity of the observable on all but
a negligible set of events. The power relation between the € and ¢ parameters is pre-
cisely captured by EMD Hélder continuity with some exponent a > ¢, connecting to our
Conjecture 1.

A variety of observables are considered in ref. [36] at the boundary of perturbative
calculability, which helpfully illustrate the various requirements in their definition.* An
observable that is useful to consider is:

V(E) = To(€) <1 + M) , (2.11)

where Tx are N-jettiness observables [44] discussed further in section 3.1.4, and E is the
total energy of the event. We will refer to this observable as the “V parameter”. The double
logarithmic structure of 73 spoils the integrability of V' at fixed order due to its behavior
as T3 goes to zero [36], which occurs on the three-particle manifold Ps. Nonetheless, this
observable can be calculated using techniques beyond fixed-order perturbation theory, such
as the Sudakov safety approach discussed in the next section.

The relation between our formalism and fixed-order perturbative calculability is
phrased as a conjecture since additional subtleties or nuances about this type of calculabil-
ity may emerge with future research. Nonetheless, it is very satisfying that our geometric

4We thank Gavin Salam for discussions related to this point.
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language provides an efficient encapsulation and unification of the existing formulations of
refs. [32, 36]. In future work, it would be interesting to find a geometric phrasing of recur-
sive IRC safety [36], which is a more restrictive condition than EMD Holder continuity and
relevant for understanding factorization and resummation. It would also be interesting to
find a geometric phrasing of unsafe observables that can be nevertheless be computed with
the help of non-perturbative fragmentation functions (see ref. [86] for a broad class of such
observables). We hope that further refinements and developments will benefit from and
be enabled by the rigorous geometric and topological constructions we have introduced for
the space of events via the EMD.

2.4 A refined understanding of Sudakov safety

Sudakov-safe observables [37-39] are an interesting class of observables that are not typi-
cally considered TRC safe because divergences may appear order by order in perturbation
theory; this issue was originally pointed out in ref. [57]. Nevertheless, the distribution for a
Sudakov-safe observable Og can be computed perturbatively by calculating its conditional
distribution with an ITRC-safe companion observable O., resumming the O, distribution,
and then marginalizing over O, to obtain a finite answer [39]:

(05 = / 10, p(0.]0.) p(O.). (2.12)

The conditional probability p(Os|O,) can either be computed in fixed-order perturbation
theory or it can be further resummed to obtain a more accurate prediction for p(Os).

Here, we interpret Sudakov-safe observables as observables that are IRC safe according
to our definition but may be EMD (Hélder) discontinuous on sets with non-zero measure
when restricted to some idealized massless N-particle manifold Py, defined in eq. (1.5). The
relevant manifolds are the N-particle manifolds since these contain the infrared singular
regions of massless gauge theories, namely configurations that differ by soft and collinear
splittings. The IRC safety of an observable according to our definition guarantees that
any potentially problematic energy flows are infinitesimally close to energy flows for which
the observable is well defined. The strategy in eq. (2.12) also enables the computation of
observables such as the V' parameter in eq. (2.11), which are EMD continuous everywhere
but exhibit Holder discontinuities on sets with non-zero measure in Py and are therefore
incalculable with fixed-order perturbation theory alone.

It is instructive to make a connection to practical methods of computing Sudakov-
safe observables. In a quantum field theory of massless particles, the cross section to
produce events with exactly N particles is zero (i.e. the naive S-matrix is zero), and such
theories ultimately yield smooth predictions in the space of events. Hence, divergences
that appear in the calculation of such an observable in a fixed-order expansion can be
regulated by a joint, all-orders calculation of the observable and the distance from the
problematic manifold Py. This is precisely the strategy represented by eq. (2.12), though
ref. [39] did not provide a generic method to identify the companion observable O.. In
section 3, we will establish that the distance from an event to the manifold Py is precisely
N-(sub)jettiness [44, 47, 48], suggesting that they are universal companion observables for
the calculation of Sudakov-safe observables, in a similar spirit to refs. [87-89).
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It is worth mentioning that, even if an observable is EMD Hoélder continuous every-
where, resummation along the lines of eq. (2.12) may still be beneficial for making reliable
predictions. The C-parameter [71-73] is an example of an EMD Hélder continuous ob-
servable, yet its fixed-order perturbative distribution exhibits discontinuous behavior at
C= % [74]. This perturbative discontinuity can be smoothed through soft-gluon resumma-
tion, and such techniques are relevant for other observables that exhibit Sudakov shoulder
behavior [90]. This is different, however, from Sudakov-safe observables, where the observ-
able itself (and not just its distribution) is ill-defined on some Py .

To summarize, our definition of IRC safety does includes Sudakov-safe observables, but
we argue that this is appropriate since such observables are indeed perturbatively accessible
via regulation with N-(sub)jettiness. This motivates the following conjecture:

Conjecture 2. An observable is perturbatively calculable, using a combination of fired-
order and resummation techniques, if it is IRC safe according to the definition in sec-
tion 2.2.

Proving this conjecture, or finding a counterexample, would shed considerable light
on the structure of perturbative quantum field theory. Of course, even if an observable is
perturbatively calculable, it may suffer from large non-perturbative or detector corrections,
and it may be helpful to use the K and a parameters in eq. (2.7) to assess the sensitivity
of observables to long-distance effects.

3 Observables: distances between events and manifolds

In this section, we show that a number of event-level and jet substructure observables can be
identified as geometric quantities in the space of events. Broadly speaking, the observables
we consider take the general form of a distance between an event and a manifold, as in
eq. (1.7). The illustration in figure 4 shows an observable as a distance between geometric
objects in the space of events. While not all IRC-safe observables can be written in this
way, a remarkably large family of classic observables take precisely this geometric form.
We will work with unnormalized observables here, but normalized versions can be obtained
by dividing by the total energy (or transverse momentum in the hadronic case).

We begin by discussing thrust and spherocity, where the manifold is the set of all
back-to-back two-particle events. To understand (recoil-free) broadening, we expand the
manifold to all two-particle events, beyond just back-to-back configurations. Then, to con-
nect to N-jettiness, we utilize the idealized N-particle manifold defined in eq. (1.5). Our
geometric language gives clear and intuitive explanations of what physics these observables
probe and why they take the forms that they do. While these EMD formulations do not
necessarily lead to practical computational improvements, we do highlight ways to speed
up the numerical evaluation of event isotropy using techniques from the optimal trans-
port literature. Finally, we identify jet angularities and N-subjettiness as jet substructure
observables obeying similar principles at the level of jets.

For most of the observables in this section, the R parameter is not needed, in which
case we define a notion of EMD relevant for comparing events with equal energies:

EMDg(E, ) = lim RPEMDg p(£,&"). (3.1)
—00
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Figure 4. An illustration of an observable O as the distance of closest approach, as measured by
the EMD, between the event £ and a manifold M of events. Many classic collider observables fit
into this precise form, stated in eq. (1.7), with particular choices of manifold.

0¢E) = 512?4 EMDg(E,&)
Name B Manifold M
Thrust t(&)
Spherocity s(€)
Broadening b(€)
N-jettiness
Isotropy Z()(&)
Jet Angularities  Ag(J)
N-subjettiness T](f)(J) B Pn: N-particle jets

PEB: 2-particle events, back to back
PEB. 2-particle events, back to back
Py: 2-particle events

Pn: N-particle events

My, uniform events

ﬂ
3
G
W T = =N

P1: l-particle jets

Table 4. Observables as the EMD between the event £ and a manifold M, using the EMD
definition in eq. (3.2). Several of these observables are illustrated in figure 5. Here, we consider
only the “recoil-free” versions of these observables.

This only has a finite limit if £ and £ have the same total energy, which is a useful property
to simplify our analysis. Explicitly, when comparing events with equal energy, this EMD
simplifies to:

M M’
EMDg(E,&') = (in SO £ (3.2)
fig2 }z 15=1
M’ M M’ M’
wa =E, > fi=E, Y. fij= ZE > Ej (3.3)
j=1 i=1 j=1 j=1

This will be the precise notion of EMD we use when the R subscript is suppressed.

In table 4, we summarize some of the observables considered below and their geometric
interpretations. In figure 5, we illustrate the geometric construction of many of these
observables, which we will explore in detail below.
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Figure 5. An illustration of a variety of observables as distances between an event £ and various
manifolds in the space of events, as summarized in table 4. (a) Thrust ¢ is the smallest distance
from the event to the manifold P2B of two-particle back-to-back events, while event isotropy Z is
the distance to the uniform event . (b) N-jettiness observables Ty are the smallest distances from
the event to the N-particle manifolds Py .

3.1 Event-level observables
3.1.1 Thrust

Thrust is an observable that quantifies the degree to which an event is pencil-like [40, 41, 91].
It has been experimentally measured [92-104] and theoretically calculated [105-110] in
detail for electron-positron collisions. Thrust seeks to find an axis n (the “thrust axis”)
such that most of the radiation lies in the direction of either n or —n; i.e. it maximizes
the amount of radiation longitudinal to the thrust axis. While a variety of conventions for
defining thrust exist, here we use the following dimensionful definition:

M
HE) = 2min Y |5i|(1 — |it; - 2l). (3-4)
"
where 7; = p;/|p;| and other definitions follow by simple rescalings. A thrust value of zero
corresponds to an event consisting of two back-to-back prongs, while its maximum value
of the total energy corresponds to a perfectly spherical event.

Interestingly, the value of thrust in eq. (3.4) is equivalent to the cost of an optimal
transport problem. This connection will allow us to cast thrust as a simple geometric
quantity written in terms of the EMD. Using F; = |p;| for massless particles and writing
out the absolute value, we can cast eq. (3.4) as:

M
t(€) =2min Y Eymin(l — f; - h, 1+, - 7). (3.5)
-
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For a fixed 7, the summand in eq. (3.5) is the transportation cost to move particle i to the
closer of n or —n with an angular measure of 92-2]- = 2nt'nj, = 2(1—n;-n;j). The sum is then
the EMD between the event and a two-particle event consisting of back-to-back particles
directed along n, where the energy of each of the two particles is equal to the total energy
in the corresponding hemisphere. The minimization over 7 is equivalent to a minimization
over all such two-particle events.

Thus, thrust is our first example of an observable that can be cast in the form of
eq. (1.7). First, we define the manifold of back-to-back two-particle events:

2
PEB = {ZEié(ﬁ — 1)
i=1

Then, using the notation of eq. (3.2) with 3 = 2,5 thrust is the smallest EMD from the
event to the PEB manifold:

E; >0, iy = —f@} . (3.6)

t(€) = min EMDy(&, &), (3.7)
E'ePPB
where the minimization is carried out over all back-to-back two-particle configurations.
Because of the R — oo limit in eq. (3.1), the optimal back-to-back configuration is
guaranteed to have the same total energy as the event £, as desired. Note that even if
this analysis is carried out in the center-of-mass frame, the optimal back-to-back configu-
ration will generically not be at rest, since it involves two massless particles with different
energies.® This suggests a possible variant of thrust where one restricts the two-particle
manifold to only include events that are physically accessible, either by forcing F1 = FEs or
by considering massive particles as in appendix A.

3.1.2 Spherocity

Spherocity is an observable that also probes the jetty nature of events [42]. It seeks to find
an axis that minimizes the amount of radiation in the event transverse to it according to
the following criterion:

M 2
$(€) = min (Z Ei|it; % m) : (3.8)
" \i=1

where the original definition of spherocity is related to this by an overall rescaling. In the
small s limit, where the event configurations are back to back, we can write |fi; x 7| ~
2(1 — |n; - n]) and obtain:

M 2
5(€) ~ min (Z Ei\/2(1 — | - ﬁ\)) : (3.9)
=1

We focus on this limiting form for the following discussion.

5 As mentioned in footnote 1, strictly speaking only the square root of EMD is a proper metric. Because
the square root is a monotonic function, though, this has no impact on the interpretation of thrust as an
optimal transport problem.

5We thank Samuel Alipour-fard for discussions related to this point.
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Similar to the case of thrust, we can identify the spherocity expression to be minimized
as an optimal transport problem. For a fixed 7, the summand in eq. (3.9) is the cost to
transport particle ¢ to the closer of 7 or —7 with an angular measure of 6;; = \/2n/' nju-7
The sum is once again the EMD from the event to the manifold of back-to-back events,
with the minimization over n interpreted as a minimization over the manifold.

Spherocity, in the appropriate limit, is therefore the square of the smallest EMD (with
B =1) from the event to the manifold PP from eq. (3.6):

s(€) = min EMD;(&,£&"). (3.10)
£ePpB

Through this lens, spherocity differs from thrust (besides the overall exponent) solely in the
angular weighting factor: 8 = 1 for spherocity and 5 = 2 for thrust. One could continue in
this direction, defining the distance of closest approach for general 3. (This is related to the
event shape angularities [70], with a key difference being that angularities are traditionally
measured with respect to the thrust axis.) Instead, we now turn towards enlarging the
manifold itself.

3.1.3 Broadening

Recoil-free broadening [43] is an observable that is sensitive to two-pronged events that are
not precisely back-to-back jets. Here we focus on recoil-free broadening, to be distinguished
from the original jet broadening [111-113] which is defined in terms of the thrust axis.® It
differs from spherocity only in that it minimizes the same quantity over two “kinked” axes
that need not be antipodal. Though subtle, this difference gives rise to very important
theoretical differences between broadening and spherocity in the treatment of soft recoil
effects [114], as discussed extensively in ref. [43].

Here, we use the following definition of broadening;:

M
b(€) = min Y E;ymin(b;1, bir), (3.11)

A, MR “
7R2:1

where 60;7, and 0;r are the angular distances between particle ¢ and ny, and g, respectively.
The fact that n; and g are minimized separately (rather than n; = —ng) is the key
distinction between recoil-free broadening and previous observables. For a fixed n; and
nR, the summand in eq. (3.11) is the cost to transport particle i to the closer of iy or ng
with an angular measure of 6;; = \/2n!'n;,. The sum is then the EMD from the event to
the manifold of all two-particle events, which need not be back-to-back, namely Py from
eq. (1.5). The minimization over iy, and np is then interpreted as a minimization over this
manifold.

"In fact, eq. (3.8) is already an optimal transport problem, using 6;; = sin Q;;, where Q;; is the opening

angle between particles ¢ and j. This has the same small angle behavior as 6;; = 2sin 92” from eq. (1.4).
8There is an EMD-based definition of the original jet broadening, using the thrust axis defined by

& = arg ming,engg EMD3(&,&’). With modified angular measure and normalization, the original jet

broadening with respect to the thrust axis is b:(£) = EMD;(€,&:). Note the two different values of g in

these expressions.
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Thus, broadening is the smallest EMD with § = 1 from the event to Ps:

b(£) = min EMD;(&,&"). 3.12
(£) = min EMDy (€€ (312)
The geometrical formulation of broadening in eq. (3.12) differs from that of spherocity in
eq. (3.10) only in that it does not restrict the manifold to back-to-back configurations.This
distinction is important to extend these ideas beyond the two-particle manifold.

3.1.4 N-jettiness

N-jettiness [44] (see also ref. [115]) is an observable that partitions an event into N jet
regions and, for hadronic collisions, a beam region. Without a beam region, it is defined
based on a minimization procedure over N axes:

M
B) _ i ‘min (62,602 ... 9%
T _AmI%NZ;Eme(Q”’H"Q’ ,GZN), (3.13)

n17“.7

where 6;; through 6;5 are the angular distances between particle ¢ and axes 71 through
Ny, respectively.

We immediately identify the summand as the cost of transporting particle ¢ to the
nearest axis. For fixed 71 through 7y, assigning the energy transported to each axis as
the energy of that axis gives rise to an IN-particle event. The expression to be minimized
is then the EMD between the original event and that N-particle event. The minimization
over nj through ny is interpreted as a minimization over all such N-particle events.

Therefore, N-jettiness is the smallest distance between the event and the manifold Py
of N-particle events. Equivalently, one can view it as the EMD to the best N-particle
approximation of the event, and we return to this interpretation in section 4.1. Thus,
we have:

T = min EMDg(E, £). (3.14)

E'ePn
We see that N-jettiness generalizes the geometric interpretation of broadening to a general
N-particle manifold and a general angular weighting exponent J3.

For hadronic collisions, initial state radiation and underlying event activity require the
introduction of a “beam” (or out-of-jet) region [44, 116, 117]. This can be accomplished
via the introduction of a beam distance 6; peam into the minimization of eq. (3.13). There
are many possible beam measures [49, 118], including ones that involve optimizing over
two beam axes 7, and 7. For simplicity, we focus on 0; peam = RP which makes no explicit
reference to the beam directions [48]. Dividing by an overall factor of R”, this modified
version of N-jettiness can be written as:

M B pb B
(BR) _ : i O Yo Oin
Ty = mmlr:m ;:1 E; min ( RE BB RE (3.15)

This definition of N-jettiness is similar to eq. (3.13), though now a particle can be closer
to the beam than to any axis. In this case, we say that the particle is transported to the
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beam and removed for a cost E;. The summand is then the cost to transport the event to
an N-particle event plus the cost of removing any particles beyond R from any axes.

Remarkably, this precisely corresponds to the EMD when formulated for events of
different total energy. Namely, N-jettiness with this beam region is simply the smallest
distance between the event and the manifold of N-particle events, with R smaller than the
radius of the space:

(B:R) ; !
J = min EMDg r(&,&7). 3.16
N erepa 8,R(E,E) (3.16)

Particles removed by the optimal transport procedure are interpreted as being part of the
beam region. This fact will also be relevant in section 4.2 for understanding sequential
recombination jet clustering algorithms as geometric constructions in the space of events.

3.1.5 Event isotropy

Our new geometric phrasing of these classic collider observables highlights the types of
configurations that they are designed to probe. Specifically, eq. (1.7) can be interpreted
as how similar an event is to the class of events on the manifold M. This framework
also suggests regions of phase space that are poorly resolved by existing observables and
provides a prescription for developing new observables by identifying new manifolds of
interest.

Event isotropy [45] is a recently-proposed observable that provides a clear example
of this strategy. It is based on the insight that distances from the N-particle manifolds
(such as thrust and N-jettiness) are not well-suited for resolving isotropic events with
uniform radiation patterns. Having observables with sensitivity to isotropic events can,
for instance, improve new physics searches for microscopic black holes or strongly-coupled
scenarios. This motivates event isotropy, which is the distance between the event £ and an
isotropic event U of the same total energy:

75)(E) = EMDg(E,U). (3.17)

Since £ and U have the same total energy by construction, it is natural to normalize event
isotropy by the total energy to make it dimensionless. The analysis in ref. [45] focused
primarily on 8 = 2, though this approach can be extended to a general angular exponent.
For practical applications, it is convenient to consider a manifold of quasi-isotropic events
of the same total energy and then estimate event isotropy as the average EMD between an
event and this manifold.

We can cast eq. (3.17) into the form of eq. (1.7) by introducing a manifold My, of
uniform events with varying total energies:

Z¥(E) = Gin EMDg(E,&). (3.18)

The R — oo limit in eq. (3.1) enforces that the optimal isotropic approximation U has the
same total energy as £, as in the original event isotropy definition.

The particular notion of a uniform distribution depends on the collider context —
spherical for electron-positron collisions and cylindrical or ring-like for hadronic collisions
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— with corresponding choices for the energy and angular measures. The case of ring-like
isotropy at a hadron collider is particularly interesting, since there are known simplifica-
tions for one-dimensional circular optimal transport problems. For f = 1, ring-like event
isotropy can be computed in O(M) runtime [119] and there are fast approximations for
any 3 > 1 [119]. This is much faster than the generic O(M?3log M) expectation for EMD
computations, motivating further studies of these one-dimensional geometries.

3.2 Jet substructure observables
3.2.1 Jet angularities

Jet angularities are the energy-weighted angular moments of radiation within a jet [46] (see
also refs. [43, 120, 121]). Here, we use the following definition of a recoil-free jet angularity:

M
As(J) = min Y E; 0/, (3.19)
i=1

where 6; is the angular distance between particle ¢ and an axis . The summand of an
angularity is the EMD from the jet to the axis, so we can follow the analogous logic from our
previous discussions of event shapes to reframe this observable in our geometric language.
Specifically, the recoil-free angularities are the closest distance between the jet and the
1-particle manifold P;:

() = min EMDs(7,.7"). (3.20)

One can alternatively consider a definition of angularities where 6; is computed with respect
to a fixed jet axis. In that case, the angularities are the EMD from the jet to a 1-particle
configuration where the total energy of the jet is placed at the position of the desired axis.

3.2.2 N-subjettiness

N-subjettiness is a jet substructure observable that applies the ideas of N-jettiness at the
level of jet substructure [47, 48]. N axes are placed within the jet, with a penalty for
having energy far away from any axis, and then the positions of the axes are optimized.
The (dimensionful) N-subjettiness of a jet can be defined as follows:

M
AT) = min 3" Eimin (6,65, .00 ). (3.21)
iy A
where 6;; through 6,5 are the angular distances between particle ¢ and axes n; through
ny. The beam region is absent due to the fact that these observables are only defined
using the particles already within an identified jet.

We can find a geometric interpretation for N-subjettiness by using the analogous
discussion from N-jettiness in section 3.1.4. N-subjettiness is the distance between the
jet and the manifold of all N-particle jets:

W(J) = min EMDg(J, 7). (3.22)

As a limiting case, N = 1 corresponds to the jet angularities in eq. (3.20).
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Figure 6. An illustration of N-subjettiness values as the smallest distances, as measured by EMD,
between the event £ and each of the N-particle manifolds Py. The jet angularities are the distances
to the 1-particle manifold P;. These observables form a set of “coordinates” for the space.

In this way, we can view N-subjettiness values as “coordinates” for the space of jets,
defined as distances from each of the N-particle manifolds, illustrated in figure 6. The N-
subjettiness ratios 7y /7n—_1, used ubiquitously for jet substructure studies [122-124], are
then the relative distances between the manifolds Py and Px_1. This is also an interesting
way to interpret existing constructions of observable bases using N-(sub)jettiness [125-127];
the fact that multiple 8 values are typically needed for these constructions emphasizes that
the choice of ground metric affects the geometry of the space induced by the EMD.

4 Jets: the closest IN-particle description of an Mparticle event

In this section, we turn our attention to how jets are defined. We interpret two of the most
common classes of jet algorithms as simple geometric constructions in the space of events.
Intuitively, we find that jets are the best N-particle approximation to an M-particle event.
Many existing techniques naturally emerge from this simple principle in fascinating ways.

First, we discuss exclusive cone finding, as this technique corresponds exactly to the
intuition above that jets approximate the energy flow of an event using a smaller number
of particles. Next, we show that many sequential recombination algorithms can be derived
by iteratively approximating an M-particle event using M — 1 particles. These jet-finding
strategies are illustrated in figure 7 as projections to N-particle manifolds in the space
of events.

4.1 General N: exclusive cone finding

XCone [49, 50] is an exclusive cone finding algorithm that seeks to find jets by minimizing
N-jettiness. It returns a fixed number of jets based on the parameters N and R, in the same
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Figure 7. An illustration of jet clustering algorithms as projections to N-particle manifolds Py
in the space of events. (a) Exclusive cone finding algorithms yield N jets as the closest N-particle
approximation to the event, as measured by the EMD. (b) Sequential recombination algorithms
iteratively find the best (M — 1)-particle approximation to the M-particle event, either (dashed)
merging two particles or (solid) removing a particle and calling it a jet.

spirit as the exclusive version of the k; sequential recombination algorithm [51]. XCone
proceeds by finding the N axes that minimize N-jettiness as defined in eq. (3.15):

argmin §M o (1% 0 O (4.1)
? ? bl 9 ) . .
fun, N i RS’ RA RB

Together with the energy assigned to those axes, or equivalently the set of particles mapped
to each axis, the N axes from eq. (4.1) define N jets. The jet radius parameter R controls
which particles are not assigned to any jet (i.e. assigned to the beam region). Follow-
ing the discussion in section 3.1.4, eq. (4.1) can be interpreted as finding the N-particle
configuration that best approximates the event of interest.

In our geometric language, we can cast XCone as identifying the point of closest ap-
proach between an event £ and the N-particle manifold Py:

TRGR(€) = argmin EMDg (€, 7). (4.2)
JEPN

Different variants of XCone correspond to different choices for the energy weight F; and
the angular measure 6;; [49, 118], which in turn correspond to different choices for what

defines the “best” N-particle approximation to an event.
As discussed in ref. [128], there is a close relationship between exclusive cone finding
algorithms, stable cone algorithms [129-131], and jet maximization algorithms [132-136].
For the choice of § = 2, the jet axis aligns with the jet momentum direction, which is known
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as the stable cone criterion [129, 130]. For N = 1, one can relate the optimization problem
in eq. (4.2) to maximizing a “jet function” over all possible partitions of an event into one
in-jet region and one out-of-jet region [132]. Iteratively applying the N = 1 procedure is
related to the SISCone algorithm with progressive jet removal [131]. All of these various
algorithms can now be interpreted in our geometric picture as different ways to “project”
the event £ onto the N-particle manifold Py.

4.2 N = M — 1: sequential recombination

Sequential recombination algorithms are a class of jet clustering algorithms that have seen
tremendous use at colliders, particularly the anti-k; algorithm [137] which is the current
default jet algorithm at the LHC. These methods utilize an interparticle distance d;;, a
particle-beam distance d;p, and a recombination scheme for merging two particles. The
algorithm proceeds iteratively by finding the smallest distance, combining particle ¢ and j
if it is a d;j, or calling 7 a jet and removing it from further clustering if it is a d;p.

There are a variety of distance measures and recombination schemes that appear in
the literature, many of which are implemented in the FASTJET library [138]. The most
commonly used distance measures take the form:

02.
dij = min (B, E}") . dip=E,

where p is an energy weighting exponent and R is the jet radius. The exponent p = 1

(4.3)

corresponds to k; jet clustering [51, 52], p = 0 corresponds to Cambridge/Aachen (C/A)
clustering [139, 140], and p = —1 corresponds to anti-k; clustering [137]. The recombination
scheme determines the energy FE. and direction 7. of the combined particle and typically
takes the form:

Ef i + Ef i)

, (4.4)
Ef + Ef

E.=FE; + Ej, Ne =
where kK = 1 corresponds the E-scheme (most typically used), x = 2 is the E>-
scheme [51, 141], and k — oo is the winner-take-all scheme [43, 53, 54]. In the E-scheme,
the four-momenta of the two particles are simply added.” In the winner-take-all scheme,
the direction is determined by the more energetic particle.

The conceptual and algorithmic richness of these different distance measures and re-
combination schemes arose from decades of phenomenological studies. Remarkably, many
of these techniques naturally emerge from event space geometry, as finding the point on
the (M — 1)-particle manifold Py;_1 that is closest to configuration £ with M particles.
Note that the sequential recombination algorithms in eqs. (4.3) and (4.4) depend on the
two parameters p and k, whereas eq. (4.6) depends only on £, so the logic below will only
identify a one-dimensional family of jet algorithms, as summarized in table 5.

90ne has to be a bit careful about the interpretation of jet masses in the E-scheme. In the discussion
below, the combined particle is interpreted as a massless four-vector. For the angular distance in eq. (1.4),
the direction n; is the same for massless and massive particles, so one can consistently assign the mass of
the jet to be the invariant mass of the summed jet constituents. For the rapidity-azimuth distance typically
used at hadron colliders, though, the rapidity of a particle depends on its mass, so one has to be careful
about whether one is talking about a light-like jet axis or a massive jet when discussing the E-scheme. See
further discussion in appendix A.
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EMDg r Name Measure d;; d;B Name Scheme \*

0<B<1|Gen k wmin(E;,E) f; E; | Winner-take-all argmin(E;, E;)
B=1 kr min(F;, Ej)ag E; | Winner-take-all argmin(E;, E;)
g=3 ? 722,?%2 :%é E; E?-scheme Efli?Ef
B=2 ? EE‘JFEé] fg E; E-scheme E}j}E]
B—oo | C/A o 1 ? !

Table 5. Different sequential recombination measures d;; and recombination schemes A* that
emerge from an EMD formulation. A question mark indicates a method that, to our knowledge,
does not yet appear in the literature. The traditional definitions of generalized k; and C/A require
squaring d;; and d;p. Note the factor of 2 in the C/A effective jet radius parameter.

To derive this connection between event geometry and sequential recombination, we
need the following simple yet profound lemma, using the suggestive notation of d;p and
d;; to refer to the EMD cost of rearrangement.

Lemma 2. As measured by the EMD, the closest (M — 1)-particle event to an M -particle
event has, without loss of generality, either:

(a) Two of the particles in the event merged together.
(b) One of the particles in the event removed.

Proof. Removing a particle from the event has some EMD cost d;p and merging a pair of
particles has a some EMD cost d;;. To reduce the number of particles in the event by one,
one can either remove a particle or merge two particles. Altering more than two particles
by (re)moving fractions of additional particles always incurs additional EMD costs. If
there are multiple pairs that are zero distance apart, then we can without loss of generality

always choose to only merge one pair. O

The two options in this lemma correspond precisely to the two possible actions at each
stage of a sequential recombination algorithm. The EMD cost of removing a particle is
always

dip = E;. (4.5)

If this is less than the cost of merging two particles together, then particle ¢ can be identified
as a jet. For one step of a sequential recombination (SR) procedure applied to an event &
with M particles, we can express this step mathematically as:

T5R(E) = € — argmin EMDg p(€,&).
’ E'€Pr—1

(4.6)

In our geometric picture, if the M particle event is “far away” from the (M — 1)-particle
manifold Pys_1, then the projected difference is a jet.
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On the other hand, if the cost of merging two particles is less than any of the particle
energies, then the event is “close” to the (M — 1)-particle manifold. Consider a pair of
particles with energies E; and F; separated by a distance 6;;. To find the best (M — 1)-
particle approximation, we want to merge these two particles into one combined particle
with energy E; + E;. Because the EMD is a metric, the optimal transportation plan must
occur along a “geodesic” connecting the particles, with particle i moving a distance A 0;;
and particle j moving a distance (1 — \)6;; for some A € [0,1].1° Minimizing this cost
with respect to A yields both the cost of merging those two particles as well as the optimal
recombination scheme with which to merge them. Because no energy is removed in this
process, eq. (4.6) yields a zero energy jet, which we can interpret as no jet being found at
this step of the sequential recombination.

The cost of merging particles ¢ and j depends on the jet radius parameter R and

91’]’ B eij B
£ (222) 5 (10 %)

For 8 <1, the cost in eq. (4.7) is minimized at the endpoints. This corresponds to moving

angular exponent [3:

(4.7)

d;; = min
A

the less energetic particle the entire distance 6;; to the more energetic particle, which is
the precisely behavior of the winner-take-all recombination scheme. For 5 > 1, the optimal
value A* can be found by differentiating eq. (4.7) with respect to A and setting the result
equal to zero. In general, the optimal recombination scheme has:

0<p<1: XN =1if E; < Ej, else 0,

Bo1: =1 (4.8)

1
B\ -1
1+ (&)
To determine the actual cost, we substitute this A* back into eq. (4.7):

0,
ﬁ < 1: dij = mln(Eiij)ﬁgy

BT | BT B
EEF L EFE ¢°
B>1: diyj=—1 i = i

1 1 \P RP"
(Efl +EJ51)

If all dj; values in eq. (4.9) are smaller than all particle energies in eq. (4.5), then the

(4.9)

optimal transportation plan is to merge particles ¢ and j.

In this way, eq. (4.6) takes an M-particle event and returns a jet (with zero energy if no
actual jet is found) plus the remaining (M — 1)-particle approximation. This corresponds
exactly to one step of a sequential clustering procedure. Iterating this procedure until

10T his linear decomposition of the distance does not hold for a general ground metric. However, it does
hold when using the rapidity-azimuth distance, the opening-angle on the sphere, the small angle limit of
eq. (1.4), or the improved 6;; distance with particle masses in appendix A.
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M =1, we derive a sequential recombination jet algorithm, where the jets correspond to
all of the positive energy configurations obtained from eq. (4.6).

Many existing methods reside within the simple framework of eq. (4.6). For instance,
8 = 1 corresponds to k; jet clustering with winner-take-all recombination. The recombi-
nation scheme for § = 2 is the E-scheme, whereas for g = % it is the E2%-scheme. Raising
the distance measures to the 1/8 power and taking the 8 — oo limit, we obtain the C/A
clustering metric, albeit with an effective jet radius that is twice the R parameter. There
are also a number of methods, indicated as question marks in table 5, that emerge from
this reasoning yet do not presently appear in the literature. Exploring these new methods
is an interesting avenue for future work.

Intriguingly, in this geometric picture, the distance measure d;; and the recombination
scheme \* are paired by the  parameter. A similar pairing was noted in refs. [49, 142]
in the context of choosing approximate axes for computing N-(sub)jettiness, and it would
be interesting to explore the phenomenological implications of these paired choices for jet
clustering. One sequential combination algorithm that does not appear is anti-k;. Given
that anti-k; is a kind of hybrid between sequential recombination and cone algorithms, there
may be a way to combine the logic of sections 4.1 and 4.2 to find a geometric phrasing of
anti-k;. If successful, such a geometric construction would likely illuminate the difference
between exclusive jet algorithms like XCone that find a fixed number of jets NV and inclusive
jet algorithms like anti-k; that determine N dynamically.

5 Pileup subtraction: moving away from uniform events

The LHC era has brought with it new collider data analysis challenges. One notable exam-
ple is pileup mitigation [60], removing the diffuse soft contamination from additional uncor-
related proton-proton collisions. The radiation from pileup interactions is approximately
uniform in the rapidity-azimuth plane, and several existing pileup mitigation strategies
seek to remove this uniform distribution of energy from the event [55, 58, 59, 143-148].
In this section, inspired by the approximate uniformity of pileup, we consider a class
of pileup removal procedures that can be described as “subtracting” a uniform distribution
of energy with density p, denoted pU, from a given event. We take the pileup density per
unit area p to be given, for instance, by the area-median approach [55]. Given an event
flow &£, the subtracted distribution £& — pU is typically not a valid energy flow, since the
local energy density can go negative. Therefore, to implement this principle at the level of
energy distributions, we turn this logic around and declare the corrected event - to be one
that is as close as possible to the given event £ when uniform radiation plf is added to it:

Ec (&, p) = argmin EMDg(E, & + pU). (5.1)
Eeq)

Here, €2 refers to the complete space of energy flows, and the R — oo limit of the EMD
from eq. (3.1) enforces that the corrected distribution £¢ has the correct total energy.

As illustrated in figure 8, one can visualize eq. (5.1) as a procedure that subtracts
a uniform component from the energy flow. To make contact with existing techniques,
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Figure 8. A visualization of pileup subtraction in the space of events as moving away from uniform
radiation. This proceeds by finding the event £¢ that, when combined with uniform contamination
pU, is most similar to the given event £. Different pileup mitigation strategies implement this
removal in different ways. In the figure above, Q refers to the space of all energy flows and Q2+ pU
is a subset of that space obtained by adding uniform contamination to every event configuration
(shown as a separate manifold for ease of visualization).

we show that area-based Voronoi subtraction [55, 56, 138] and ghost-based constituent
subtraction [58] can be cast in the form of eq. (5.1) in the low-pileup limit. We then
develop two new pileup mitigation techniques that have optimal transport interpretations
even away from the low-pileup limit: Apollonius subtraction, which corresponds to exactly
implementing eq. (5.1) for 8 = 1, and iterated Voronoi subtraction, which repeatedly
applies eq. (5.1) with an infinitesimal p. Since pileup is characteristic of a hadron collider,
throughout this section we compute the EMD using particle transverse momenta p7; and
rapidity-azimuth coordinates n; = (y;, ¢;), with 6;; being the rapidity-azimuth distance.
Typically, pileup is taken to be uniform in a bounded region of the plane (e.g. |y| < Ymax),
though the specifics will not significantly affect our analysis. First, though, we establish
an important lemma that justifies why the corrected distribution - has a particle-like
interpretation.

5.1 A property of semi-discrete optimal transport

There is a direct connection between pileup subtraction in eq. (5.1) and semi-discrete
optimal transport [149]. Semi-discrete means that we are comparing a discrete energy flow
(i.e. one composed of individual particles) to a smooth distribution (i.e. uniform pileup
contamination).

Importantly, if £ is discrete, then the corrected distribution £- will also be discrete.
This can be proved via the following lemma.

Lemma 3. & defined according to eq. (5.1) is strictly contained in &, where contain-
ment here means that &€ — E¢ is a valid distribution with non-negative particle transverse
momenta.
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Proof. Suppose for the sake of contradiction that £ is defined according to eq. (5.1) has
some support where £ does not. Let € be the distribution that & flows to when Ec + pU
is optimally transported to &, noting that by definition, £ must be contained in €. By the
linear sum structure of eq. (3.2) [150], we have the following relation:

EMDg(E,Ec + pU) = EMDg(E,Ec) + EMDg(E — &, pU). (5.2)
Now using the following property of EMDg inherited from Wasserstein distances [149]:
EMDg(E, F) > EMDg(E + G, F +G), (5.3)

with equality if 8 = 1 and the ground metric is Euclidean, we add £ to both arguments of
the last term in eq. (5.2) and apply eq. (5.3) to find:

EMDg(E,Ec + pU) > EMDg(E,Ec) + EMDg(E, € + plU). (5.4)

Now using that EMDg (5 ,€c) > 0 by the assumption that they have different supports as
well as the non-negativity of the EMD, we find:

EMDg(E,Ec + pU) > EMDg(E, € + pU), (5.5)

which contradicts the assumption that £ is found according to eq. (5.1). Thus, we conclude
that & has no support outside of the support of &, verifying the claim. O

This lemma establishes that pileup mitigation strategies defined by eq. (5.1) act by
scaling the energies of the particles in the original event &£, not by producing new particles.
Indeed, this is a desirable feature of many popular pileup mitigations schemes, including
two well-known methods that we describe next.

5.2 Voronoi area subtraction

Voronoi area subtraction [55, 56, 138] is a pileup mitigation technique that estimates a par-
ticle’s pileup contamination by associating it with an area determined by its corresponding
Voronoi region, or the set of points in the plane closer to that particle than any other [151].
Letting AZVOY' be the area of the Voronoi region of particle ¢, Voronoi subtraction then sim-
ply removes pAlV‘)r' from each particle’s transverse momentum, without letting the particle
pr become negative. If pAY™ > pr; then the particle is removed entirely. In figure 9(a),
we show the Voronoi regions for an example jet recorded by the CMS detector [25, 152].

Voronoi area subtraction (VAS) can be thought of as carving up the uniform event
pU according to the original event’s Voronoi diagram and transporting this energy to the
location of the corresponding particle, yielding the corrected energy flow:

M
Evas(in) = > max (pr; — pAY™™,0) 6(7 — 7). (5.6)
=1

Strictly speaking, Voronoi area subtraction does not satisfy exact IRC invariance (see
egs. (2.1) and (2.2)) and thus it cannot in general be written as operating on energy
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(a) Voronoi (b) Constituent Subtraction (c) Apollonius

Figure 9. Three pileup subtraction procedures shown for a jet from the 2011A CMS Jet Primary
Dataset. The jet constituents are shown as gray disks at their locations in the rapidity-azimuth
plane with sizes proportional to their transverse momenta. The boundary is at a distance R = 0.5
from the jet axis at the center. The color intensity of each region is proportional to its area, which
determines the size of the pileup correction. The Voronoi diagram (a) is independent of p. The
constituent subtraction (b) and Apollonius (c¢) diagrams are determined using a p that corresponds
to subtracting one-tenth of the total scalar pr of the jet.

flows. The reason is that an exact IRC splitting changes the number of Voronoi regions as
well as their areas. In order for eq. (5.6) to be valid, we therefore assume that particles
with exactly zero transverse momentum are removed and exactly coincident particles are
combined before applying the Voronoi area subtraction procedure.

In the limit that p < pr;/AY" for all particles 4, the max in eq. (5.6) evaluates to just
its first argument. In this case, since no particle is assigned a larger correction than its
own transverse momentum, the Voronoi diagram gives the optimal transportation plan that
minimizes the EMD of moving the uniform event with density p onto the event of interest:

p < min {pTvi/Azyor'} . Evas = argmin EMD1(€,&" + pU). (5.7)
E'e)

Thus, in this small-pileup limit, eq. (5.6) agrees with eq. (5.1) with 5 = 1. Despite this at-
tractive geometric interpretation, Voronoi area subtraction beyond this limit is sensitive to
arbitrarily soft particles: the amount that is subtracted depends only on particle positions,
through their Voronoi areas, and not their transverse momenta.

5.3 Constituent subtraction

Constituent subtraction [58] is another pileup mitigation method that resolves several
pathologies of Voronoi area subtraction by correcting the particles in a manner that de-
pends on both their positions and their transverse momenta.'! This comes at the cost of
requiring a fine grid of low energy “ghost” particles with pJ = pABPOSt where Aghost g
the area assigned to each ghost, as a proxy for the pileup contamination. The algorithm

171n this discussion, we focus on the oo = 0 case of constituent subtraction, as recommended by ref. [58].
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is applied by considering the geometrically closest ghost-particle pair k,7 and modifying
them via:

Pt — ma‘X(pT,’i - pg“Jw 0)7 p%/g — max(pg“7k; — PT,i» 0)7 (58)

continuing until all such pairs have been considered. Since the number of ghosts is typically
large in order to have fine angular granularity, this iteration through all ghost-particle pairs
can be computationally expensive.

Constituent subtraction (CS) in the continuum ghost limit can be geometrically de-
scribed by placing circles around each point in the rapidity-azimuth plane and simultane-
ously increasing their radii. Each point in the plane is assigned to the particle whose circle
reaches it first. Circles stop growing when Aics, the area assigned to particle ¢, grows larger
than pr;/p. We can write the resulting distribution as:

M
Eos() =Y (pri — pAT®) 6(h — 7). (5.9)
i=1
Unlike naive Voronoi area subtraction, continuum constituent subtraction satisfies exact
IRC invariance, since a zero energy particle has zero A°S and an exact collinear splitting
yields two areas that sum to the original A®S. Constituent subtraction is also better suited
for intermediate values of p, where particles can be fully removed, since further corrections
are distributed to the next closest particle instead of being ignored as in Voronoi area
subtraction.

Due to the complicated shapes of the corresponding regions, it is difficult to describe
the areas AiCS analytically and in practice they need to be estimated using numerical
ghosts. An example of constituent subtraction is shown in figure 9(b), where it can be seen
that some region boundaries are straight and thus contained in the Voronoi diagram of
figure 9(a). Indeed, growing circles from a set of points and assigning points in the plane
according to which circle reaches them first is another way of describing the construction
of a Voronoi diagram. Regions with circular boundaries correspond to softer particles that
are fully subtracted by the constituent subtraction procedure.

When p is sufficiently small such that no particle’s region has a circular boundary
(i.e. no circle stops growing), constituent subtraction is exactly equivalent to Voronoi area
subtraction. Constituent subtraction in the low-pileup limit is then also equivalent to opti-
mally transporting the uniform event with density p to the event of interest and subtracting
accordingly, again in line with eq. (5.1) with 5 = 1:

p < min {pT,i/AZyor'} i Ecs = argg n;lzin EMD; (€, + pU). (5.10)
‘e
Constituent subtraction can also be extended with a AR™®* parameter to restrict ghosts
from affecting distant particles. Our geometric formalism can also encompass this locality
by re-introducing the R-parameter to the EMD in eq. (5.10) with R = AR™?,

5.4 Apollonius subtraction

Voronoi area subtraction and constituent subtraction both make contact with eq. (5.1)
in the small-p limit, but we would like to explore pileup subtraction based on optimal
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transport for all values of p. By Lemma 3, we know that the corrected event is contained
in the original event, and by the decomposition properties of the EMD in eq. (5.2), we only
need to consider the transport of pU to £. Since the total transverse momenta of pUf and
& are generally different, this is now an example of a semi-discrete, unbalanced optimal
transport problem [153, 154].

The problem of minimizing the EMD between a uniform distribution and an event
is solved, for general §, by a generalized Laguerre diagram [154]. For the special case of
B =1, which we focus on here, this is also known as the Apollonius diagram (or additively
weighted Voronoi diagram) [149, 155, 156], and for § = 2 it is a power diagram [157]. An
Apollonius diagram in the plane is constructed from a set of points n; that each carry a non-
negative weight w; that is the i*® component of a vector w € ]Ri/[ . In the two-dimensional
Euclidean plane, the Apollonius region associated to particle ¢ depending on w is:

RM™M(w) = {i € R ||| — || — w; < || — 7yl —wj, Y5 #i}, (5.11)
where particle indices 4,j = 1,..., M and || - || is the Euclidean norm. One interpretation
of eq. (5.11) is that region i is all points closer to a circle of radius w; centered at 7n; than to
the corresponding circle for any other particle. The boundaries of the Apollonius regions
are contained in the set {# € R?|||A — 7;|| — ||A — Aj|| = w; — w;}, which is a union of
hyperbolic segments. Note that adding the same constant to all of the weights does not
change the resulting Apollonius diagram. Hence, if all the weights are equal, they can
equivalently be set to zero and we attain the Voronoi diagram as a limiting case of an
Apollonius diagram.

We can now specify the action of Apollonius subtraction on an event using the areas
of the Apollonius regions subject to the minimal EMD requirement:

M
Enpon () = 3 (pri — pA (w)) 6(7 — ), (5.12)
i=1
M
w* = arg minz EMD; g ({pT,i, i}, pRZApOH'(w)> : (5.13)
weRY

treating pRZApOH'(W) as an event with uniform energy density p in that Apollonius region.
Here, eq. (5.12) is analogous to egs. (5.6) and (5.9), and eq. (5.13) implements the re-
quirement that the EMD of the subtraction is minimal. Note that the R parameter in
eq. (5.13) serves only to guarantee that it is more efficient to transport energy rather than
create/destroy it. As long as 2R is greater than the diameter of the space, R has no im-
pact on the solution other than to guarantee that pAiApon‘(w*) does not exceed pr,;, as this
would be less efficient than transporting the excess energy elsewhere. An example of an
Apollonius diagram is shown in figure 9(c), where hyperbolic boundaries of the Apollonius
regions are clearly seen in the outer part of the jet and straight boundaries, matching those
of the Voronoi diagram, are seen near the core.

In this way, Apollonius subtraction generalizes Voronoi area and constituent subtrac-

tion beyond the small-pileup limit, directly implementing eq. (5.1) for § = 1 for all val-
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ues of p:
Eapon, = argmin EMD+ (€, & + pU). (5.14)
£'eqd
While the optimal solution in eq. (5.13) is based on an unbalanced optimal transport
problem, the restatement in eq. (5.14) corresponds to balanced transport. This same
connection underpins Lemma 3, guaranteeing that the corrected event in eq. (5.12) involves
the same M directions as the original event, just with different weights.

To turn eq. (5.14) into a practical algorithm, we would need an efficient way to compute
the weights according to eq. (5.13). While refs. [153, 154] have developed the theoretical
framework of semi-discrete, unbalanced optimal transport needed to solve this convex min-
imization problem, they stop short of describing easily-implementable algorithms to attain
practical solutions. In order to create figure 9(c), we were limited to using numerical ghosts
to directly solve for the transport plan that minimizes the EMD cost of subtracting the
uniform energy component from the event, which is too computationally costly for LHC
applications.

A?pou' are previously specified, then the solution to eq. (5.13)

If the target areas
simplifies [149]. Given that the areas depend nontrivially on the resulting weight vector,
though, the only case where we know them ahead of time is when p is such that all of

the energy will be exactly subtracted, in which case A?p oll.

= pri/p. Though this is not
so useful for pileup, where we typically want to subtract an amount of energy less than
the total, it does indicate that an Apollonius diagram can be found and used to compute
the event isotropy from section 3.1.5 without the use of numerical ghosts. We leave the
implementation of such a procedure to future work, though we note that ref. [149] has
already built an implementation that relies on numerical ghosts to estimate the areas of

the Apollonius regions rather than solving for them analytically.

5.5 Iterated Voronoi subtraction

Given the difficulty of analytically solving eq. (5.13) and thus implementing Apollonius
subtraction, we now develop an alternative method called iterated Voronoi subtraction
that gives up a global notion of minimizing EMD but retains a local one. In all three
methods described above, the difficulty comes when a particle is removed in the course
of subtracting pileup. Otherwise, the above methods all reduce to subtracting transverse
momentum according to the Voronoi areas of the regions corresponding to the particles, as
in eq. (5.7). This suggests a procedure in which pileup is subtracted according to eq. (5.1)
an infinitesimal amount at a time, thus ensuring that eq. (5.7) can be used at every stage
of the procedure.

The area of the Voronoi cell of particle ¢ is now a function of the total amount of
energy density that has been subtracted thus far, a quantity that starts at zero and will
be integrated up to the target p*! over the course of the procedure. When a particle loses
all of its transverse momentum, it is removed from the Voronoi diagram and is considered
to have zero area associated to it. The removal of a particle from the diagram changes the
Voronoi regions of all of its neighbors, and their areas are updated accordingly. Denoting
the area associated to particle ¢ after p worth of energy density has been subtracted as
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ANVS(p), we can write the corrected distribution for iterated Voronoi subtraction (IVS) as

M tot
p
ens@) =3 (pri [ a0 a0 ot ), (5.15)
i=1 0

Unlike egs. (5.12) and (5.13), eq. (5.15) naturally lends itself to a simple and efficient
implementation. We can iteratively solve for A%VS (p) using the fact that the areas corre-
spond to Voronoi regions, and furthermore that these regions change only when a particle
is removed. Let £©) be the initial event consisting of particles with transverse momenta,

(0) (0 tot

py; in Voronoi regions with area A; ). We subtract a total energy density p*°* by breaking

up the integral in eq. (5.15) starting with p(®) = 0 and determining the boundaries from:

p(")zmaX{p‘Oépﬁpt Zp s.t. pAl Y < pgffjl)Vj}, (5.16)
where n starts at 1 and goes up to at most M. The values of p(”) can be expressed
simply as:

p(”_l) n—1
. . T, ;
p"™ = min | min A(nj—l) , ptot — Zp(’) , (5.17)
j i=0

(" D> o.

The updated particle momenta from each piece of the integral in eq. (5.15) are then:

where the inner minimum is taken over all remaining particles with p;,

P =pi Y = pm Al (5.18)

and a particle is considered removed if its transverse momentum is zero, in which case it is

n)

of £, The above procedure terminates either when the total amount of energy density
ot

also considered to have zero area. The areas AZ(- are determined by the Voronoi diagram

removed is equal to p'°* or there are no more particles left in the event. Thus, iterated
Voronoi subtraction makes contact with the geometric perspective of eq. (5.1), applying it
in infinitesimal increments, resulting in the discrete steps:

51(3)8 = argmin EMD (£ &' + p™ ). (5.19)
E'e
Said another way, this is simply a repeated application of Voronoi area subtraction: sub-
tract until a particle reaches zero momentum, and repeat until the desired energy density
has been removed.

Iterated Voronoi subtraction is made even more attractive computationally when one
considers that the Voronoi diagram of £ does not need to be recomputed from scratch.
Rather, it can be obtained from the Voronoi diagram of £~ by removing a site and
updating only the neighboring regions. Thus, we only need to construct the Voronoi di-
agram of £© and each removal can be done in constant (amortized) time as the average
number of neighbors of any cell is no more than 6 [151]. We have constructed an imple-
mentation of iterated Voronoi subtraction that interfaces with FASTJET and will explore
its phenomenological properties in future work.
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Figure 10. An illustration of the space of theories. Each point in the space is a “theory”: a
distribution over (or collection of) events, as indicated by the blue point. The distance between
theories is quantified by the XMD, giving rise to a metric space.

6 Theory space

When do two theories give rise to similar signatures? In this section, we seek to generalize
the intuition behind the EMD to obtain a metric between theories using their predicted
cross sections in energy flow space. A construction of such a distance and the induced
“theory space” is conceptually useful and, in fact, naturally underpins several recently
introduced techniques for collider physics.

We introduce the cross section mover’s distance (XMD) as a metric for the space of
theories. Here, we treat a “theory” as an ensemble of event energy flows with corresponding
cross sections, encompassing both the predictions of quantum field theories as well as the
structure of collider datasets. To accomplish this, we again make use of an EMD-like
construction, except the XMD uses the EMD itself as the “angles” and the event cross
sections as the “energies”, as mentioned in table 2. The resulting space of theories with
the XMD as a metric is illustrated in figure 10. Interestingly, ref. [158] also put a metric
on theory space by using the Fisher information matrix.

6.1 Introducing a distance between theories

A “theory” T is taken to be a (finite, for now) set of events with associated cross sec-
tions {(&;,0:)}Y,. We can equivalently view 7 as a distribution over the space of event
configurations &:

N
T(E) = 0i0(E - &). (6.1)
=1

In the case of unweighted events, the cross sections are simply o; = 1/L, where L is the
total integrated luminosity. One can think of these N events as being produced by a perfect
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event generator or measured by a perfect collider experiment in the context of this theory.
In the £ — oo or N — oo limit, eq. (6.1) becomes a smooth distribution.

The XMD is the minimum “work” required to rearrange one theory 7 into another 7~
by moving cross section F;; from event ¢ in one theory to event j in the other:

EMD,; n(E;,
SMDy 56,r(T, T') {}ST}ZZ ( B’g( : ) ZUZ ZUJ ’

=1 j=1
N N’
Z./—"Z]SU Z]:ZJSJZ, ZZEJ—IHIII(ZO’Z,ZJ) (6.3)
=1 j=1

Here, i and j index the events in theories 7 and 7', respectively. The parameter S,
which has the same units as the EMD, controls the relative importance of the two terms,
analogous to the jet radius parameter R in the EMD. We have also introduced a possible
~ exponent, analogous to the 8 angular exponent in the EMD.

The XMD has dimensions of cross section, where the first term quantifies the difference
in event distributions and the second term accounts for the creation or destruction of
cross section. For v > 0, it is a true metric as long as the underlying EMD is a metric
and 29 is larger than the largest attainable EMD between two events.!'? In the limit as
S — 00, the ¥MD reduces simply to the difference in total cross section between the two
theories. The natural continuum notion of eq. (6.2) can be used whenever such an analysis
is analytically tractable.

The XMD from a theory to itself is zero in the continuum limit or with infinite data.
Further, two theories that differ in their Lagrangians yet give rise to identical scattering
cross sections for all energy flows will have a ¥MD of zero. This includes, for instance, the-
ories that are equivalent up to field redefinitions [159] or rearrangements of the asymptotic
states [160-162]. Finally, if two theories have any observable differences in energy flow,
then the XMD between them will be non-zero. Note that the >MD inherits the flavor and
charge insensitivity of the EMD, but it is interesting to consider extending the XMD to
account for additional quantum numbers that particles may carry.

6.2 Jet quenching via quantile matching

Quantile matching [64] is an analysis strategy to study the modification of jets as they
traverse the quark-gluon plasma in heavy-ion collisions. We now show that, surprisingly,
this technique can be cast naturally in a ¥MD formulation. The optimal “theory moving”
transport between two otherwise-equivalent datasets provides a proxy for the jet modifica-
tion by the quark-gluon plasma.

Intuitively, the idea is to select a set of statistically equivalent jets from both proton-
proton (pp) collisions and heavy-ion (AA) collisions. This gives a snapshot of jets and
their energies before and after modification by the quark-gluon plasma, respectively. Such
a selection can be achieved by selecting jets with the same upper cumulative effective cross

12The analogous discussion to footnote 1 holds for v > 1.
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section, after appropriately normalizing the AA cross section to account for the average
number of nucleon-nucleon collisions.
With such a selection, a quantile matching can be used to specify p%uant for a given

heavy-ion jet with reconstructed transverse momentum p%A:
i ty _ yeff / AA
Spp(pr ) = SRA(Pr), (6.4)

where quuant gives a proxy for the jet pr prior to modification by the quark-gluon plasma.
The ratio between the heavy-ion and proton-proton jet transverse momentum in the same
quantile then gives a physically-motivated quantification of the medium jet modification.

AA
Qaa(plity = 2L (6.5)

- p%uant '
We now turn to explaining the intriguing connection between this quantile matching
procedure and the XMD through optimal transport. We use transverse momenta in place
of energies and take R — oo in eq. (1.2), where the EMD becomes simply the difference
in jet transverse momenta. Further, we set v =1 and S =1 in eq. (6.2) and note that the
normalization of the cross sections makes the second term in that equation vanish.

The theory moving problem now becomes a simple one-dimensional optimal transport
problem of moving the pp jet pr distribution to the AA jet pr distribution. Remarkably,
this is mathematically equivalent to quantile matching. We use the notation TM to rep-
resent the optimal theory movement F* in the ¥MD. Letting Taa be the set of heavy-ion
jets and T, be the set of proton-proton jets, we have that:

PR = TM (Taa. Top) P2, (6.6)

where we can define this formally using a “ghost” heavy-ion jet with transverse momentum
p%A and infinitesimal cross section o ~ 0.

Quantile matching can therefore be seen as a matching induced by the optimal theory
movement between the heavy-ion and proton-proton jets. In this sense, it operationally
defines the modification by the quark-gluon plasma in terms of the theory-movement of
the jet transverse momentum spectrum. It would be interesting to follow this connection
further and explore this procedure using the full EMD beyond the R — oo limit to study
the medium modification as a function of the jet substructure.

6.3 Event clustering and coresets

One of the essential unsupervised methods for probing a dataset is to analyze its complexity.
A method to do this for collider physics datasets is that of k-eventiness, recently introduced
in ref. [25]. Here, one seeks to find k representative events that minimize the EMD from
each event in the dataset to the nearest representative event:

N
Vi) = min > o;min{EMD(E;, K1)7,EMD(;, K2)", ... ,.EMD(&,Kx)"},  (6.7)
KK 4
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where we have dropped the 5 and R subscripts on EMD for compactness. The value of V,
probes how well the dataset is approximated by the k£ events. This gives rise to the notion
of Vj as the “k-eventiness” of the dataset, in analogy with N-(sub)jettiness, where smaller
values of V}, indicate better approximations.

From a geometric perspective, Vi is the smallest >MD to the manifold of k-event
datasets. Analogous to eq. (3.2), we can introduce the S — oo version of the ¥MD:

SMD,(T,77) = Jim S7RMD, (T, T, (6.8)

which yields an infinite distances between theories of different total cross sections. Following
the identical logic to sections 3.1.4 and 3.2.2, we have:

Vv = min, SMD, (7, 7). (6.9)
Here, we use the | - | notation to count the number of events in 7. Just like for N-

(sub)jettiness, different values of « highlight different aspects of theory space geometry.

Following the logic in section 4.1 of lifting the N-jettiness observable into the XCone jet
algorithm, we can lift k-eventiness into an event clustering algorithm. The representative
events C (i.e. the point of closest approach on the k-event manifold), has the interpretation
of the “k-geometric-medians” for v = 1 or “k-means” for v = 2. For practical applications,
it is often convenient to restrict the representative events to be within the dataset T, i.e.
the “k-medoids”, giving only an approximate value of V. While the full problem of finding
the representative jets may be computationally intractable, fast approximations to find the
medoids exist and have been explored in ref. [25].

Inspired by section 4.2, one might consider implementing sequential clustering algo-
rithms by iterating 3>MD computations to approximate M events with M — 1 events and
so forth. Such a clustering may be helpful for rigorous data compression of large collider
datasets or, if implemented efficiently, for tasks such as triggering. These ideas are closely
related to the notion of finding a coreset (see ref. [163] for a recent review), for which
techniques from quantum information and quantum computation may also find use [164].
Additionally, ref. [165] uses the Wasserstein metric to construct “measure coresets” that
take into account the underlying data distribution and which may prove useful for high-
energy physics applications. We leave further exploration of theory geometry and theory
space algorithms to future work.

7 Conclusions

In this paper, we have explored the metric space of collider events from a theoretical per-
spective. Beginning from the EMD between final states, namely the “work” required to
rearrange one into another, we have cast a multitude of diverse collider algorithms and
analysis techniques in a geometric language. First, we connected this metric to the funda-
mental notion of IRC safety in massless quantum field theories, with the EMD providing
a sharp language to define IRC safety and even Sudakov safety. We extended this con-
nection by highlighting that a wide variety of collider observables, including thrust and
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N-jettiness, can be cast as distances between events and manifolds in this space. Further,
we demonstrated that many jet clustering algorithms, such as exclusive cone finding and
sequential clustering, can be exactly derived in full detail from the simple principle that
jets are the best N-particle approximation to the event. Even pileup mitigation techniques
developed to face the LHC-era challenge of high luminosity running can be cast in the
language of subtracting a uniform radiation pattern, connecting this field to semidiscrete
unbalanced optimal transport. Finally, we generalized our reasoning to define a distance
between “theories” as sets of events with cross sections, proving a new lens to understand
several existing techniques and a roadmap for future developments in the geometry of
theory space.

From the perspective of massless quantum field theories, our metric space of events
is the natural space for understanding observables, as the only truly observable quantities
are IRC safe. More speculatively, it would be interesting to circumvent the (unphysical)
particle-level stage of calculations and make theoretical predictions directly in the space
of events. Understanding and expanding in this direction would require natural notions of
volume and integration in this space, perhaps aided by recent developments in Wasserstein
spaces [166—-169], though we leave this fascinating exploration to future work. Nonetheless,
it has already been established that the energy flows themselves obey factorization theorems
in effective field theory contexts [170], and give rise to rich behavior in correlators [5, 171-
173]. Going directly from first principles and symmetries to observables (i.e. energy flows,
not particles) suggests a natural extension to the philosophy driving the present scattering
amplitudes program (see refs. [159, 174, 175] for reviews). It is also interesting to extend
this logic to massive quantum field theories where observable quantities can depend on
flavor and charge. One promising strategy is to treat events as collections of objects (jets,
electrons, muons, etc.) and to use a ground distance that penalizes converting one type of
object into another [176]. Alternatively, it may be possible to find an EMD variant that
mimics the flavor-sensitive clustering behavior of ref. [177].

It is also useful to discuss these developments in the broader context of machine learn-
ing and the physical sciences [122, 178, 179]. Typically, problems in the natural sciences
can be cast as machine learning problems such as classification and regression, whereby
the relevant tools from machine learning can be applied to achieve improved performance
on those tasks. It is far rarer for machine learning to enhance our theoretical or concep-
tual understanding of physics directly. This story provides an interesting case where new
insights and questions exposed by machine learning have impacted purely theoretical and
phenomenological collider physics. The question of when two collider events are similar, for
which the EMD was introduced, was originally motivated by unsupervised learning meth-
ods and autoencoders [180-183], which require a distance matrix or reconstruction loss.
By providing an answer to this simple question, which itself involved familiar machine
learning tools such as optimal transport, we uncovered a new mathematical formalism to
better understand and express concepts in quantum field theory and collider physics. We
hope that this will be just one example of many future profound insights into the natural
sciences facilitated by this perspective.
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A Energy moving with massive particles

In this appendix, we briefly explore an alternative definition of energy flow appropriate for
massive particles, with a corresponding change in the measures used to define the EMD.
The energy flow in eq. (1.1) treats events as sets of particles that have energy-like weights
{E;} and geometric directions {f;}. The EMD in eq. (1.2) is based on pairwise distances
{0;;} that are only functions of the 7; and 7n; directions. The exact definitions of E;, n;,
and 6;; may vary depending on the collider context and other choices. For massless final-
state particles in eTe™ collisions, it is typical to take the energy E to be equal to the total
momentum |p’|, and the geometric direction 7 to be equal to the unit vector p/E. For
massless particles in hadronic collisions, it is natural to use transverse momentum pr and
a geometric direction based on azimuth ¢ and pseudorapidity 7.

It is straightforward to adapt the energy flow to massive particles (see related discussion
in ref. [13]). For the energy measure, the natural choices are energy in the ete™ case and
transverse energy in the hadronic case:

Bi= /Bt mi Bri=\fph +m? (A1)

Both of these reduce nicely to the expected expressions in the m; — 0 limit. For the
geometric direction, the natural choices are velocity and transverse velocity, written in
four-vector notation:

Iz Iz

nf P (1,7)", n‘jﬂz = g’ = (cosh y;, Up;, sinh y; )#, (A.2)
T2

where ¢ = p;/FE; is the particle three-velocity, vr; = pri/Er; is the particle transverse

two-velocity, and y; is the particle rapidity. Again, these have the expected behavior in the

m; — 0 limit, and for finite mass, the velocities are bounded as |0| € [0, 1] and |v7| € [0, 1].
To define the EMD, we choose the following pairwise angular distance:

055 =/ —(nf —n})?, (A.3)

where one replaces n# with nf. in the hadronic case. The first minus sign is needed because
the difference between two time-like vectors with n? € [0,1] is space-like. This expression
reduces to the usual expression 6;; = \/2n}'n;, in the massless limit.
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Figure 11. The space of (massive) particle kinematics, with pairwise distances corresponding to
Fuclidean distances in this space. Massless particles with v = 1 live on the boundary and particles
at rest with v = 0 are at the origin. One can interpret this figure as a snapshot of the event taken
at a time t after the collision, when the particles have traveled a distance vt.

To gain intuition for this geometric distance between massive particles, it is instructive
to expand out eq. (A.3) in the ete™ case:

91']' =1/ (’[); — 17]')2 = \/UZQ + U]2- - 21)1' Uj COS Qija (A4)

where §2;; = arccosn; - 7; is the purely geometric angle between particles ¢ and j. We

see that the velocity magnitude v = |#] acts as a radial coordinate on the sphere, and the
pairwise distances 0;; are just the Euclidean distances between two points in the unit ball,
with distances v; and v; from the origin and angle €2;; between them. Massless particles
live entirely on the boundary with v = 1 and massive particles live inside the ball with
0 <wv < 1. An illustration of this massive particle phase space is shown in figure 11.

The use of this massive distance measure has an interesting interplay with some of
the studies in the body of the paper. For example, the analysis of thrust in section 3.1.1
involved finding the EMD to the manifold of back-to-back massless particle configurations
of potentially unequal energy. Using the massive particle distance, one could consider find-
ing the EMD to the manifold of all possible two-particle configurations, including massive
particles. For 8 = 2, this is equivalent to partitioning the event into two halves with
masses M4 and Mp and corresponding energies F4 and Ep, and minimizing the quantity
Mf‘ JEs+ M?B /Ep. A nice feature of this approach is that the optimal two particle config-
uration has the same energies and velocities as one would get from clustering the particles
in each half. Note that this approach is closely related to (but not identical to) the original
definition of heavy jet mass in ref. [67] based on minimizing M + M3.

The idea of optimizing jet regions based on M?/FE also appears in the jet maximization
approach [132]. In fact, using the massive distance measure in eq. (4.2) with § = 2 and
N =1, and repeating the logic in ref. [128], we recover precisely the algorithm in ref. [132],
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where the parameter R controls the size of the resulting jet region. The EMD approach
yields a natural way to extend the jet maximization algorithm to N > 1, and also allows
for an alternative definition of N-jettiness from eq. (3.16) based on time-like axes.

As another example, the analysis of recombination schemes in section 4.2 involved
minimizing the transportation cost to merge two particles into one. For 8 = 2, this
was equivalent to the E-scheme, namely £ = 1 in eq. (4.4), up to the subtlety noted in
footnote 9. Using the massive particle distance, the merged particle in the E-scheme has
the energy and direction:

Emf + Ejﬂ?

E. = E; + E; b=
c i+ K ne E1+E] )

(A.5)
where appropriate T' subscripts should be included in the hadronic case. The combined
four-vector is

P = Ecnll = pi +pf, (A.6)

which is a valid expression in both the eTe~ and hadronic cases. Thus, the combined four-
vector is just the sum of the two particles, which is indeed the desired E-scheme behavior.
Note, however, that the interpretation of the jet radius is very different if one uses the
massive particle distance, since clustering happens in velocity space. We leave further
studies of the massive particle distance to future work.
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