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1 Introduction

Quarks and gluons are fundamental, color-charged particles that are copiously produced at

colliders like the Large Hadron Collider (LHC). Despite their ubiquity, these high-energy

quarks and gluons are never observed directly. Instead, they fragment and hadronize into

sprays of color-neutral hadrons, known as jets, via quantum chromodynamics (QCD). As

the majority of jets originate from light (up, down, strange) quarks or gluons, a firm

understanding of quark and gluon jets is important to many analyses at the LHC. There

has been tremendous recent theoretical and experimental progress in analyzing jets and jet

substructure [1–11], with a variety of observables [12–22] and algorithms [23–27] developed

to expose and probe the underlying physics. Despite decades of using the notions of “quark”

and “gluon” jets [28–42], a precise and practical hadron-level definition of jet flavor has

not been formulated.
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Even setting aside the issue of jet flavor, ambiguity is already present whenever one

wants to identify jets in an event [43]. Nonetheless, jets can be made perfectly well-

defined: any hadron-level algorithm for finding jets that is infrared and collinear (IRC) safe

provides an operational jet definition that can be compared to perturbative predictions.

While different algorithms result in different jets, specifying a jet algorithm allows one to

make headway into comparing theoretical calculations and experimental measurements.

Meanwhile, in the case of jet flavor, the lack of a precise, hadron-level definition of “quark”

and “gluon” jets has artificially hindered progress by precluding separate comparisons of

quark and gluon jets between theory and experiment.

Typical applications involving “quark” and “gluon” jets in practice often rely on ill-

defined or unphysical parton-level information, such as from the event record of a parton

shower event generator. Progress has been made in providing sharp definitions at the

parton-level [44, 45], in the context of factorization theorems [46–48], and at the conceptual

level [49], but an operational definition, to our knowledge, has never been developed (see

ref. [50] for a review). A quark/gluon jet definition1 should ideally work at the hadron

level, regardless of whether a rigorous factorization theorem exists, and be practically

implementable in both theoretical and experimental settings.

In this paper, we develop an operational definition of quark and gluon jets that is

formulated solely in terms of experimentally-accessible quantities, does not rely on specific

theoretical constructs such as factorization theorems, and can be readily implemented in

a realistic context. Intuitively, we define quark and gluon jets as the “pure” categories

that emerge from two different jet samples. Our definition operates at the aggregate level,

avoiding altogether the troublesome and potentially impossible notion of a per-jet flavor

label in favor of quantifying quark and gluon jets by their distributions.

Specifically, given two jet samples M1 and M2 (e.g. Z+jet and dijet) in a narrow trans-

verse momentum (pT ) bin, with M1 taken to be more “quark”-like, and a jet substructure

feature space O, we define quark (q) and gluon (g) jet distributions in the following way:

pq(O) ≡ pM1(O)− κ12 pM2(O)

1− κ12
, pg(O) ≡ pM2(O)− κ21 pM1(O)

1− κ21
, (1.1)

where κ12 and κ21 are known as reducibility factors and are directly obtainable from the

probability distributions pM1(O) and pM2(O). The reducibility factors are defined as:

κ12 ≡ min
O

pM1(O)

pM2(O)
, κ21 ≡ min

O
pM2(O)

pM1(O)
. (1.2)

The reducibility factors in eq. (1.2) identify the most M1-like and M2-like regions of the

substructure phase space by extremizing the sample likelihood ratio. We take these phase

space regions to define what it means to be quark-like and gluon-like. The subtractions in

eq. (1.1) then proceed to “demix” the two sample distributions as if they were statistical

mixtures. The quark and gluon distributions are defined solely in terms of hadronic fiducial

cross section measurements of the two samples, ensuring that our definition is manifestly

1While in some contexts “jet definition” means a procedure for finding jets in an event, in this paper we

use “quark/gluon jet definition” to mean a definition of jet flavor.
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fully data-driven and non-circular. This definition relies on a jet algorithm to define the

jets in the jet samples, which also allows for further hadron-level processing, such as jet

grooming techniques [23–27], to be folded directly into the quark/gluon jet definition.

One main goal of this paper is to argue that our operational definition, combined with

existing tools, provides a way to obtain information about the likelihood, quark fractions,

and quark and gluon distributions in a fully data-driven way, without reference to un-

physical notions such as generator labels. The concepts appearing in our definition are

directly related to methods already in use in experimental quark/gluon jet analysis ef-

forts [51–56]. Quark-gluon likelihood ratios, obtained from parton shower generators, have

been implemented by both ATLAS and CMS as optimal discriminants in low-dimensional

feature spaces. Quark fractions, obtained from event generators, for several jet samples

have successfully allowed for separate determination of quark and gluon jet properties by

solving linear equations. These analyses already use a statistical-mixture picture of quark

and gluon jets, which is a direct consequence of our definition.

Many physics analyses at the LHC would benefit from a clear definition of quark

and gluon jets that allows for unambiguous extraction of separate quark and gluon jet

distributions and fractions. Fully data-driven quark/gluon jet taggers have the potential

to increase the sensitivity of a variety of new physics searches [37, 38], and related ideas

have been developed for model-independent searches for new physics [57]. Experimentally

measuring separate quark and gluon distributions of jet observables would significantly

improve attempts to extract the strong coupling constant from jet substructure [58] and

to constrain parton shower event generators [50, 59]. Extracting data-driven fractions of

quark and gluon jets could improve the determination of parton distribution functions and

allow for separate measurement of quark and gluon cross sections. These ideas may also

be relevant in the context of heavy ion collisions, where quarks and gluons are expected

to be modified differently by the medium and probing the separate modifications to quark

and gluon jets would be of significant interest.

We now give a brief summary of the rest of this paper. In section 2, we provide a

self-contained overview, motivation, and exploration of our quark/gluon jet definition. We

discuss recent work in ref. [50] that developed a “conceptual” definition of quark/gluon

jets, falling short of providing a full definition that can be reliably used in practice, but

highlighting the key elements required of a sensible quark/gluon jet definition. We then

develop the intuition and mathematical tools necessary to construct our operational def-

inition, which satisfies the core conceptual principles while being precise and practically

implementable. After stating our operational definition, we examine its physical and sta-

tistical properties in detail. An exploration of the definition in the context of simple jet

substructure observables at leading-logarithmic accuracy is left to appendix A.

In section 3, we discuss how our quark/gluon jet definition benefits from, and provides

a foundation for, recent work on data-driven machine learning for jet physics. The clas-

sification without labels (CWoLa) paradigm [60] for training classifiers on mixed samples

can be used to approximate the mixed-sample likelihood ratio, a key part of implementing

our definition. The jet topics framework [61] extracts underlying mutually irreducible dis-

tributions from mixture histograms, yielding a practical method to obtain the reducibility
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factors in eq. (1.2). Using jet topics with the approximated mixed-sample likelihood ra-

tio, obtained from the data via CWoLa, allows for more robust fraction and distribution

extraction. With quark fractions, obtained from the data via jet topics, CWoLa classifiers

can be (self-)calibrated in a fully data-driven way. More broadly, the assumptions required

for CWoLa and jet topics — that QCD jet samples are statistical mixtures of mutually

irreducible quark and gluon jets — are satisfied by construction with our definition.

In section 4, we showcase a practical implementation of our definition using jet sam-

ples from two different processes: Z+jet and dijets. Using six trained models detailed

in appendix B, we apply the procedure outlined in section 3 to extract quark fractions by

combining the CWoLa and jet topics methods, finding more robust performance than when

using single jet substructure observables. With the reducibility factors and quark fractions

in hand, we extract separate quark and gluon distributions for a variety of jet substructure

observables, even those that do not exhibit mutual irreducibility. We compare the results

of using our data-driven definition of quark and gluon jets with a per-jet Pythia-parton

definition, finding qualitative and quantitative agreement between the two. The potential

to self-calibrate CWoLa classifiers is also shown with an explicit example. While our stud-

ies are based on parton-shower samples, all of these analyses can in principle be performed

in data with the experimental tools already developed for quark and gluon jet physics at

the LHC.

We present our conclusions in section 5, discussing potential new applications made

feasible by this work. Possible future developments and extensions are highlighted. A

study of the similarity of parton-labeled quark and gluon jets between different processes

is left to appendix C.

2 Defining quark and gluon jets

2.1 Review of a conceptual quark/gluon jet definition

Due to the complicated radiative showering and fundamentally non-perturbative hadroniza-

tion that occurs in the course of jets emerging from partons, there is no unambiguous defini-

tion of “quark” or “gluon” jets at the hadron-level. Despite this challenge, the importance

of a clear, well-defined, and practical definition of quark and gluon jets at modern colliders

cannot be overstated. In ref. [50], a significant effort was made to summarize and comment

on the concepts of “quark jet” and “gluon jet”. The authors of ref. [50] settled on the

following statement as the best way to conceptually define quark jets (and, analogously,

gluon jets):

Quark and gluon jet definition (conceptual) [50]. A phase space region (as defined by

an unambiguous hadronic fiducial cross section measurement) that yields an enriched sam-

ple of quarks (as interpreted by some suitable, though fundamentally ambiguous criterion).

This definition is attractive for numerous reasons. First, it is explicitly tied to hadronic

final states, avoiding dependence, for example, on the unphysical event record of a parton

shower generator. Further, it is specific to the context of a particular measurement and is

– 4 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
9

thus defined regardless of whether the observable and processes in question have rigorous

factorization theorems. Finally, its goal is to tag a region of phase space as quark- or gluon-

like rather than to specify a per-jet truth definition of quark and gluon jets. The main

difficulty with this conceptual definition, as noted in ref. [50], is determining the criterion

that corresponds to successful quark or gluon jet enrichment.

Despite its attractive qualities, without a practical proposal for implementing this

conceptual definition on data, the case studies in ref. [50] operationally fell back on less

well-defined definitions, such as using initiating parton information from a parton shower

generator to tag a quark/gluon jet. Further, the definition only tags specific regions of phase

space as “quark” or “gluon”, such as low or high values of some substructure observable,

and provides no framework for discussing jet flavor outside of these regions. To remedy

this issue, we seek to upgrade the conceptual definition to an operational one by giving a

concrete, data-driven method for optimally identifying quark- or gluon-enriched regions of

phase space and obtaining full quark and gluon jet distributions.

2.2 Motivating the operational definition

To motivate our definition, suppose that we have two QCD jet samples M1 and M2 in

a narrow pT bin. One of the mixed samples (M1 without loss of generality) should be

“quark-enriched” and the other “gluon-enriched” relative to each other according to some

qualitative criterion. Ref. [50] took M1 and M2 to be, respectively, Z+jet and dijet samples,

a case that we further investigate in section 4.

Assume for now that M1 and M2 are statistical mixtures of quark and gluon jets —

an assumption that will not be made in our final definition. Letting the quark fractions of

the two mixtures be f1 and f2, the relationship between the distribution of substructure

observables in mixture Mi in terms of the quark and gluon jet distributions is:

pMi(O) = fi pq(O) + (1− fi) pg(O), (2.1)

where the feature space O is, for our purposes, a set of jet substructure observables taken

to be sufficiently rich to encode all relevant information about jet flavor.

Following the outline of the Conceptual Definition, we consider classification of quark

and gluon jets and examine the relationship of this task with classification of one mixture

from the other. By the Neyman-Pearson lemma [62], an optimal classifier for discriminating

two classes is their likelihood ratio (or any monotonically-related quantity). In the case of

quark and gluon jets, the likelihood ratio is:

Lq/g(O) ≡ pq(O)

pg(O)
, (2.2)

and, similarly, the optimal classifier for discriminating between M1 and M2 is:

LM1/M2
(O) ≡ pM1(O)

pM2(O)
=
f1 Lq/g(O) + (1− f1)

f2 Lq/g(O) + (1− f2)
. (2.3)

It is easily verified that the mixed-sample likelihood ratio in eq. (2.3) is a monotonic function

of the quark-gluon likelihood ratio in eq. (2.2) as long as f1 6= f2 (see refs. [60, 63]). The
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Figure 1. The monotonic relationship between the mixed-sample log-likelihood ratio and the

quark-gluon log-likelihood ratio from eq. (2.3) for illustrative fraction values. The relationship

between the maximum and minimum values of the mixed-sample and quark/gluon log-likelihoods

from eq. (2.8) is visually evident in that the red curve horizontally asymptotes to the two black

dashed curves. The plots are shown in terms of the logarithms of the likelihood ratios so that

exchanging M1 ↔M2 or q ↔ g simply corresponds to a reflection of the curve.

relationship between the mixed-sample likelihood ratio and the quark-gluon likelihood ratio

of eq. (2.3) is depicted in figure 1. This cleanly demonstrates that the optimal mixed-sample

classifier is also the optimal quark-gluon classifier.

Supposing that we can approximate the mixture likelihood ratio sufficiently well, we

have distilled the (potentially huge) substructure feature space to a single number which is

provably optimal for identifying quark- and gluon-enriched phase space regions. However,

we still lack a procedure for actually identifying the enriched regions; we solely know

that they are given by some cut on Lq/g(O), or equivalently a cut on LM1/M2
(O). The

key insight for moving closer toward an operational definition is that Lq/g(O), being the

optimal discriminant of quark and gluon jets, can be immediately used to identify the

most quark-enriched (gluon-enriched) regions as those where Lq/g(O) is at its maximum

(minimum). In the case that we can find regions of phase space Oq and Og where quark

and gluon jets respectively are pure, we have that Lq/g(Og) = 0 and Lg/q(Oq) = 0 and we

say that the quark and gluon categories are mutually irreducible (see refs. [61, 63]).

The extrema of the quark/gluon likelihood ratio Lq/g, corresponding to the enriched

regions of phase space, are naturally related to the extrema of the mixture likelihood ratio

LM1/M2
. To this end, it is helpful to define the reducibility factor between distributions A

and B, κAB, as:

κAB ≡ min
O

pA(O)

pB(O)
, (2.4)

– 6 –
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which is the minimum (or more precisely, the infimum) of the likelihood ratio of A and

B. Supposing that quarks and gluons are mutually irreducible in the feature space O, the

reducibility factors of quark jets to gluon jets (and vice versa) vanish:

Quark and gluon jet mutual irreducibility : κqg = 0, κgq = 0. (2.5)

We now show how, assuming quark/gluon mutual irreducibility, the mixture reducibil-

ity factors can be related to mixture fractions. The reducibility factors of the mixed samples

can be written down by treating them as mixtures of quarks and gluons as in eq. (2.1):

κMiMj = min
O

LMi/Mj
(O) = min

O

fi Lq/g(O) + (1− fi)
fj Lq/g(O) + (1− fj)

. (2.6)

Using our assumptions that M1 is quark-enriched relative to M2, we can write eq. (2.6)

as a relation between the mixed-sample reducibility factors and the quark/gluon reducibil-

ity factors:

κM1M2 =
f1 κqg + (1− f1)

f2 κqg + (1− f2)
, κM2M1 =

f2 + (1− f2)κgq
f1 + (1− f1)κgq

, (2.7)

where the monotonicity of LMi/Mj
(O) with Lq/g(O) has been used to push the minimum

operation onto the quark-gluon likelihood ratio in eq. (2.6). If quarks and gluons are

mutually irreducible, we can plug eq. (2.5) into eq. (2.7) to find the reducibility factors of

the mixtures:2

κ12 ≡ κM1M2 =
1− f1

1− f2
, κ21 ≡ κM2M1 =

f2

f1
. (2.8)

Figure 1 demonstrates that eq. (2.6) defines the asymptotic behavior of the mixed-sample

log-likelihood ratio.

Combining the reducibility factors of eq. (2.8) with the mixture relationship of eq. (2.1),

we can solve for the underlying quark and gluon jet distributions solely in terms of the

well-defined mixture distributions pMi(O) and mixture reducibility factors κij :

pq(O) =
pM1(O)− κ12 pM2(O)

1− κ12
, pg(O) =

pM2(O)− κ21 pM1(O)

1− κ21
. (2.9)

Remarkably, eq. (2.9) exposes the underlying quark and gluon jet distributions in terms of

experimentally well-defined quantities such as the distribution of jets in mixed samples and

their reducibility factors. Notice also that the quark and gluon distributions each depend on

only one of the two mixed-sample reducibility factors. Thus, even if only one reducibility

factor can be reliably extracted, the corresponding quark or gluon jet distribution can

nevertheless be obtained.

Here, we have made several simplifying assumptions, namely that quark and gluon jets

can be made well-defined, that M1 and M2 are statistical mixtures of quark and gluon jets,

and that quark and gluon jets are mutually irreducible in the feature space O. eq. (2.9)

then followed as a consequence, demonstrating that, under these assumptions, it is possible

to get access to pure quark and gluon distributions. What if, on the contrary, we do not

make these assumptions, while also requiring that our definition of quark and gluon jets

not be circular? We now proceed to thoroughly explore this idea.

2An analogous analysis carries through even if non-zero reducibility factors κqg and κgq are specified.
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2.3 An operational definition of quark and gluon jets

We now provide our operational definition of quark and gluon jets that builds upon the

Conceptual Definition in section 2.1 but can be used for practical applications at the LHC

and future colliders. We begin by stating the definition in terms of the notation developed

in section 2.2, and then we proceed to a detailed discussion of its features.

In the absence of any certainty about the underlying structure of samples M1 and M2,

we choose to start at the end of section 2.2, letting eq. (2.9) provide a fully-operational

definition of quark and gluon jets in terms of experimentally well-defined quantities:

Quark and gluon jet definition (operational). Given two samples M1 and M2 of

QCD jets at a fixed pT obtained by a suitable jet-finding procedure, taking M1 to be “quark-

enriched” compared to M2, and a jet substructure feature space O, the quark and gluon jet

distributions are defined to be:

pq(O) ≡ pM1(O)− κ12 pM2(O)

1− κ12
, pg(O) ≡ pM2(O)− κ21 pM1(O)

1− κ21
, (2.10)

where κ12, κ21, pM1(O), and pM2(O) are directly obtainable from M1 and M2.

There are two immediate points to note about the Operational Definition. First,

it does not attempt to define quark and gluon jets at the level of individual jets, but

rather it defines them in aggregate as two well-defined probability distributions. This is in

keeping with the spirit of the Conceptual Definition in section 2.1, which sought to identify

enriched regions of phase space rather than to determine a per-jet truth label. It is also in

concert with the basic construction of quantum field theory, which only provides theoretical

access to distributional quantities such as cross sections rather than making predictions for

individual events.3

Second, the Operational Definition does not rely on assumptions of mutual irreducibil-

ity of quarks and gluons or the factorization of jet samples as mixtures, instead turning

them into derived properties of the definition, as we show below. In the limit where fac-

torization holds and quarks and gluons are mutually irreducible in the feature space O,

the Operational Definition returns precisely the quark and gluon jets which make sense

in that context. Outside of these potentially-restrictive limits, the definition nonetheless

returns two well-defined categories which can be fairly called quark and gluon jets. The

Operational Definition essentially takes the vague notion of “quark-like” from the Concep-

tual Definition and injects mathematical substance by specifying how to extract the quark

and gluon distributions.

With the Operational Definition in hand, we now turn the reasoning of section 2.2 on

its head to derive the mutual irreducibility of quarks and gluons and the mixture nature

of the two jet samples M1 and M2. Using the quark/gluon jet definition in eq. (2.10), we

can write down the quark/gluon reducibility factors as:

κqg = min
O

Lq/g(O) = min
O

(1− κ21)(LM1/M2
(O)− κ12)

(1− κ12)(1− κ21LM1/M2
(O))

= 0, (2.11)

3Note that (non-deterministic) per-jet labels can be obtained from this definition if needed. For a jet with

observable value O, one can assign it a “quark” label with probability f pq(O)/(f pq(O) + (1− f) pg(O)) by

using the extracted quark and gluon distributions, pq and pg, and extracted quark fraction f of the sample.

These labels are universal if the observable is monotonically related to the likelihood ratio.

– 8 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
9

where we have used the monotonicity of Lq/g(O) in LM1/M2
(O) and the definition of κ12

to see that the numerator vanishes while the denominator is non-zero. An analogous

calculation shows that κgq = 0, and therefore that the distributions of quark and gluon

jets as defined by the Operational Definition are always mutually irreducible.

Next, we demonstrate that M1 and M2 are mixtures of the defined quark and gluon

jet distributions. Solving eq. (2.10) for the distributions of M1 and M2 in terms of the

quark/gluon distributions yields:

pM1(O) = f1 pq(O) + (1− f1) pg(O), f1 ≡
1− κ12

1− κ12κ21
, (2.12)

pM2(O) = f2 pq(O) + (1− f2) pg(O), f2 ≡
κ21(1− κ12)

1− κ12κ21
, (2.13)

where we have introduced two numbers f1 and f2 such that f1, f2 ∈ [0, 1]. We see from

eqs. (2.12) and (2.13) that under the Operational Definition, M1 and M2 have the inter-

pretation of being statistical mixtures of quark and gluon jets where the quark fractions

of each sample are f1 and f2, respectively. Note that while this was entirely anticipated,

given the motivation provided in section 2.2, the Operational Definition manages to avoid

the circular reasoning of that section, where a well-defined notion of quark and gluon jets

and the statistical-mixture nature of M1 and M2 were assumed to exist before we were

able to specify a rigorous procedure to determine them.

There are several additional properties of the Operational Definition worth noting.

First, any additional preprocessing of the jets in M1 and M2 which is operationally defined

at the hadron level, such as jet grooming, can be folded into the jet-finding procedure and

thus incorporated directly into our definition. Second, which of M1 or M2 is more “quark-

enriched” only serves to label which of the resulting distributions is “quark” and which

is “gluon” and does not change the distributions which are produced by this definition.

Finally, while eq. (2.10) implies the vanishing of the quark/gluon reducibility factors, if a

different, non-zero quark/gluon reducibility factor is desired a priori, then the definition

may be suitably modified to accommodate those non-zero values. Thus, the assertion of

quark-gluon mutual irreducibility, which is supported by evidence from case studies, can

be relaxed to any specified quark/gluon reducibility factors which may then be thought of

as inputs to the definition.

In section 3, we connect the Operational Definition to machinery that has already

been developed in the jet substructure and statistical literature, finding that the tools

needed to implement the Operational Definition, true to the name, are readily available.

In appendix A, we gain some additional insight into the Operational Definition by theo-

retically exploring it with simple jet substructure observables in a tractable limit of per-

turbative QCD.

3 Data-driven jet taggers and topics

In this section, we connect our Operational Definition of quark and gluon jets to recent

developments at the intersection of jet physics and statistical methods, particularly the
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data-driven paradigms of CWoLa [60] and jet topics [61]. CWoLa provides a method to

approximate the quark/gluon likelihood ratio by distilling the available information in a

huge feature space of jet substructure observables [60, 64, 65]. The jet topics method was

introduced and developed in ref. [61], where it was shown that statistical methods could be

used to “disentangle” quark and gluon jets from mixtures. We will show how these methods

can be combined to form a concrete implementation of the Operational Definition.

3.1 Classification without labels: training classifiers on collider data

Recently, there has been an effort to train physics classifiers directly on data despite the

lack of labeled truth information, going under the broad term of weak supervision. Ref. [66]

was the first to apply weak supervision methods in a particle physics context, showing that

given mixed samples with known signal fractions, a quark/gluon classifier on a few high-

level inputs could be trained without access to per-jet truth labels, a paradigm termed

learning from label proportions (LLP). Ref. [60] developed CWoLa as a method to train a

jet classifier via weak supervision on a few generalized angularities [12–14, 19, 20], where

signal fractions do not need to be known in order to train the classifier. Ref. [65] investi-

gated both CWoLa and LLP in the context of high-dimensional, modern machine learning

methods, finding that while both methods were performant, CWoLa generalized better and

more simply to complex models. CWoLa has since given rise to new techniques to search

for signals of new physics in model-independent ways [57]. These methods are an impor-

tant step towards making classification at colliders fully data-driven. Here, we review the

CWoLa paradigm in preparation for incorporating it as part of the implementation of our

Operational Definition.

Conceptually, CWoLa is extremely simple: given two mixtures M1 and M2 of signal

(quark) and background (gluon) jets, train a classifier to distinguish jets in M1 from jets

in M2. This procedure has the attractive property of being able to immediately use any

model which can be trained with full supervision. Furthermore, in the limit that M1 and M2

become pure signal and background, CWoLa smoothly approaches full supervision. With

enough statistics, a feature space that captures all relevant information, and a suitable

training procedure, a CWoLa classifier should approach the optimal discriminant between

the two mixed samples.4 By the Neyman-Pearson lemma [62], the optimal discriminant

between two binary classes is the likelihood ratio. As discussed in section 2.2, the mixed-

sample likelihood ratio is monotonically related to the quark/gluon jet likelihood ratio.

Thus, CWoLa provides a way of approximating the optimal discriminant between quark

and gluon jets given access only to mixed samples.

There are potential concerns, though, that one might have regarding CWoLa in partic-

ular and weak supervision in general. Are enough statistics and a rich-enough feature space

available? Do we have a suitable training procedure? Refs. [60, 64, 65] address these con-

cerns and demonstrate that CWoLa indeed works in realistic cases. For example, CWoLa

was used in ref. [65] to obtain a performant quark/gluon jet classifier by discriminating

Z+jet and dijet samples using jet images and convolutional neural networks. As described

4The generalization to learning from multiple mixtures of signal and background is possible as long as

each mixture is assigned a label that is (on average) monotonically related to its signal fraction.
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in appendix B, there are many other jet representations and machine learning models that

are suitable to be trained with CWoLa. Additionally, previous uses of CWoLa have made

assumptions about the samples M1 and M2 being mixtures of well-defined quark and gluon

jets, without specifying which definition is being used or attempting to quantify what hap-

pens if quark and gluon jets are not the same in the two samples (i.e. sample dependence).

From the perspective of this work, those concerns are removed by using the Operational

Definition, which turns the problem on its head and lets the samples M1 and M2 define

quark and gluon jets. The notion of sample dependence manifests in a new way with our

Operational Definition, which we discuss more in our conclusions in section 5.

3.2 Jet topics: extracting categories from collider data

Building on a rich analogy between mixed jet samples and textual documents, ref. [61]

introduced jet topics and demonstrated how topic modeling could be used to obtain quan-

titative information about the signal and background distributions from the mixed sample

distributions. The present work extends and elaborates on this approach in order to for-

mulate a practical implementation the Operational Definition of quark and gluon jets in

section 2.3.

Given two samples of quark and gluon jets M1 and M2, the jet topics technique seeks

to extract two mutually irreducible categories such that the samples are mixtures of these

categories. To the extent that quark and gluon jets are themselves mutually irreducible,

they will correspond to the extracted topics. There are various procedures for extracting

the topics from mixed samples. Ref. [61] used a method known as “demixing” that was

developed in ref. [67] in order to obtain the topics. Other procedures (e.g. non-negative

matrix factorization [68]) that are popular for textual topic modeling could in principle also

be used. Demixing works by searching for “anchor bins” in the mixed sample distributions

over a feature space O, which are histogram bins for which the likelihood of M1 to M2 is

maximized or minimized.

In the language of section 2.2, demixing returns reducibility factors κ12 and κ21. With

the reducibility factors in hand, the fractions of topic T1 in each mixed sample, f
(1)
T1

and

f
(2)
T1

, can be obtained by solving equations analogous to eq. (2.8), and the topic distributions

pT1(O) and pT2(O) are given by eq. (2.9) where q is replaced by T1 and g by T2:

pT1(O) =
pM1(O)− κ12 pM2(O)

1− κ12
, f

(1)
T1

=
1− κ12

1− κ12κ21
, (3.1)

pT2(O) =
pM2(O)− κ21 pM1(O)

1− κ21
, f

(2)
T1

=
κ21(1− κ12)

1− κ12κ21
, (3.2)

where we have assumed without loss of generality that f
(1)
T1

> f
(2)
T1

.

The jet topics method provides a simple example of the fascinating mileage one is

able to achieve from the picture of jets as statistical mixtures. If the signal (quark) and

background (gluon) distributions are mutually irreducible, the topic fractions are the signal

fractions, f
(1)
S = f

(1)
T1

and f
(2)
S = f

(2)
T1

, from which a number of other useful quantities

may be computed. First, consider some observable O that we wish to cut on to make

a signal/background classifier. For a given threshold t, let the fraction of jets in Mi for

which O is greater than t be fMi(O > t). Let εs(t) be the rate that the signal is correctly
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identified (the true positive rate) and εb(t) be the rate that the background is identified as

signal (the false positive rate) by the classifier (O, t). We then have the equations:

fM1(O > t) = f
(1)
S εs(t) + (1− f (1)

S ) εb(t), (3.3)

fM2(O > t) = f
(2)
S εs(t) + (1− f (2)

S ) εb(t), (3.4)

which can be solved to give signal and background efficiencies at the given threshold:

εs(t) =
fM1(O > t)(1− f (2)

S )− fM2(O > t)(1− f (1)
S )

f
(1)
S − f

(2)
S

, (3.5)

εb(t) =
fM2(O > t)f

(1)
S − fM1(O > t)f

(2)
S

f
(1)
S − f

(2)
S

. (3.6)

In this way, the extracted fractions can be used to calibrate the classifier. Additionally,

the pure signal and background distributions of any observable can be obtained from the

reducibility factors (or equivalently the extracted fractions): simply change the feature

space O in eqs. (3.1) and (3.2) to whatever observable is desired.

There are several issues to address in attempting to use topic modeling for quark

and gluon jets. How do we know that quark and gluon jets are mutually irreducible in

our feature space? In appendix A, we show that quark and gluon jets are not mutually

irreducible in the leading-logarithmic limit of individual Casimir-scaling or Poisson-scaling

observables, though this calculation strongly suggests that mutual irreducibility could be

achieved in a larger feature space. Ref. [61] showed that quark and gluon jets appear to

be mutually irreducible in practice for the constituent multiplicity observable, but did not

offer a way to fold in additional information. If we attempt to use multiple observables in

the topic modeling procedure, how do we deal with the curse of dimensionality that results

from attempting to fill multi-dimensional histograms? As we now discuss, CWoLa can be

combined with jet topics to efficiently use arbitrarily large feature spaces to determine the

optimal quark and gluon jet topics.

3.3 Optimal taggers for optimal topics

To summarize, the CWoLa framework allows trained models to approximate a function

monotonic to the quark/gluon likelihood ratio, which is the optimal quark/gluon jet classi-

fier. Further, the jet topics technique allows for signal and background distributions to be

extracted from a given low-dimensional feature space. Here, we demonstrate how CWoLa

and jet topics can be combined into a direct implementation of the Operational Definition

of quark and gluon jets from section 2.3.

When viewed as a likelihood-ratio approximator, a CWoLa-trained model can do more

than per-jet classification: it is an efficient method for compressing information in a (po-

tentially) huge but sparsely-populated feature space down to the provably optimal single

observable for quark/gluon jet separation. This approach of taking a CWoLa-trained model

output as an interesting observable in its own right solves the curse of dimensionality men-

tioned at the end of section 3.2. Furthermore, the guarantee of optimality for the likelihood

– 12 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
9

ratio by the Neyman-Pearson lemma carries over to the jet topics context in that the mu-

tual irreducibility of quark and gluon jets is maximized when the optimal discriminant is

used. In this sense, optimal taggers give rise to optimal topics.

The marriage of CWoLa and jet topics yields more fruit: since the signal fractions

extracted by the topics procedure can be used to calibrate a classifier, the requirement that

a CWoLa-trained model be calibrated using known signal fractions is removed. A CWoLa

model now has the potential to be self-calibrating in the sense that the model is used to

extract the signal fractions, and then the fractions are used to calibrate that same model

(other models can also be calibrated). Furthermore, the optimal topic fractions can be used

to extract the pure distribution of any desired observable in a straightforward manner.

This combined paradigm provides a new way to use fully data-driven classifiers in high-

energy particle physics, namely as optimal observables for topic fraction extraction. The

fully data-driven aspect of the entire procedure cannot be emphasized enough as application

of these methods to data is the ultimate goal. The black-box nature of complex classifiers

becomes less disturbing in this context, since we can think of the role of the classifier as

simply to regress onto the likelihood ratio, without much concern as to how this is done. As

with ref. [69], understanding of both the inputs and outputs of a machine learning model

allows us to be agnostic with respect to the internal details.

Where does the Operational Definition in section 2.3 fit into this picture? If we adopt

the Operational Definition and define quark and gluon jets to be the categories returned

by the topic-finding procedure, this addresses the first issue with jet topics referenced at

the end of section 3.2, that we do not know the relation between the extracted topics

and quark and gluon jets. Also, since under this definition the samples M1 and M2 are

mixtures of exactly the same quark and gluon jets, the sample dependence concerns men-

tioned at the end of section 3.1 are alleviated. The optimality guarantee resulting from

the Neyman-Pearson lemma and the good practical performance lend support to the Op-

erational Definition being useful both in theory and practice. It is no coincidence that

the Operational Definition, CWoLa, and jet topics share the same property: they work

well when notions of sample independence and mutual irreducibility exist, but still return

something sensible as the situation is detuned away from this nice limit.

4 Quark and gluon jets from dijets and Z+jet

In this section, we apply the combined paradigm of CWoLa and jet topics to the realistic

context of Z+jet and dijet samples, obtaining the distributions of quark and gluon jets via

the Operational Definition.5

4.1 Event generation

We generated events using Pythia 8.230 [71] with the default tunings and shower parame-

ters at
√
s = 14 TeV. Hadronization and multiple parton interactions (i.e. underlying event)

were included and a parton-level pT cut of 400 GeV was applied. The Z+jet sample was

5We also investigated applying the Operational Definition to CMS jet mass measurements on similar

samples [70]. In the dijet sample, though, only average jet mass (instead of individual jet mass) is reported.
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Symbol Name Short Description

nconst Constituent Multiplicity Number of particles in the jet

nSD Soft Drop Multiplicity Probes number of perturbative emissions

N95 Image Activity Number of pixels containing 95% of jet pT

τ
(β=1)
2 2-subjettiness Probes the two-prong nature of the jet

w Width Angularity measuring the girth of the jet

m Jet Mass Mass of the jet

PFN-ID Particle Flow Network with ID Particle three-momentum + ID inputs

PFN Particle Flow Network Particle three-momentum inputs

EFN Energy Flow Network Using only IRC-safe information

EFPs Energy Flow Polynomials Linear classification with EFPs

CNN Convolutional Neural Network Trained on 33× 33 2-channel jet images

DNN Deep Neural Network Trained on an N -subjettiness basis

Table 1. The individual jet substructure observables (top) and machine learning models (bottom)

considered in this study, along with their corresponding symbols and short descriptions. A full

discussion of the observables and models is given in appendix B.

obtained using the WeakBosonAndParton:qg2gmZq and WeakBosonAndParton:qqbar2gmZg

processes, ignoring the photon contribution and requiring the Z to decay invisibly. The

dijet sample was obtained using the HardQCD:all process, excluding bottom quarks.

Final state, non-neutrino particles were clustered with FastJet 3.3.0 [72] using the

anti-kT algorithm [73] with a jet radius of R = 0.4. All jets were required to have pT ∈
[500, 550] GeV and rapidity |y| < 2.5. The hardest jet for Z+jet and the hardest two

jets for dijets were considered and kept if they passed the above specified cuts. The

unphysical parton-shower-labeled jet flavor was determined by matching the clustered jet

to the Pythia parton(s) by requiring that the jet lie within 2R of the parton direction

from the hard process. Events in which none of the jets passed this criteria were not

considered. One million jets passing all cuts were retained for both the dijet and Z+jet

samples. The Pythia-labeled quark fraction was 86.3% for the Z+jet sample and 49.8%

for the dijet sample.

4.2 Extracting reducibility factors and fractions

For the jet substructure feature space O, we consider a variety of individual jet substructure

observables and trained models. In table 1, we summarize the observables and models

used for our study. Details of the observable computation, model training, and model

architectures are given in appendix B.

For each of the observables and trained models, we proceed to extract the topic frac-

tions from the Z+jet and dijet samples. We implement a version of the demixing procedure

used in ref. [61] and described in ref. [67]. Below, we describe the practical procedure used

for the studies in this section, including the determination of uncertainties. Here, we let O

indicate either a single observable or the output of a trained model.
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1. Histograms : the histograms for pZ+jet(O) and pdijets(O) are computed for a specified

binning. Statistical uncertainties are taken to be
√
NZ+jet and

√
Ndijets coming from

one-sigma count uncertainties within each bin.6

2. Likelihood ratios : the mixed-sample log-likelihood ratio ln pdijets(O)/pZ+jet(O) is cal-

culated. The statistical uncertainty is estimated from uncertainty propagation per

bin to be:

σln pdijets/pZ+jet
=

√
1

Ndijets
+

1

NZ+jet
. (4.1)

3. Anchor bins : noisy, low-statistics bins are neglected by only considering bins with

more than 50 events in each sample. The upper (lower) anchor bin is obtained by

finding the maximum (minimum) bin for the log-likelihood ratio minus (plus) its

uncertainty.

4. Reducibility factors : the lower (upper) reducibility factor κ21 (κ12) is obtained by

exponentiating (minus) the log-likelihood ratio evaluated at the lower (upper) anchor

bin. Uncertainties on the reducibility factors are obtained by standard uncertainty

propagation.

5. Topics : the jet topics are obtained from the reducibility factors κ12 and κ21 according

to the definition in eq. (2.10), with uncertainties propagated from the reducibility

factors.

6. Fractions : topic fractions are obtained from the reducibility factors κ12 and κ21 ac-

cording to eqs. (2.12) and (2.13), with uncertainties propagated from the reducibility

factors. In this study, the topic fraction always corresponds to the quark fraction.

While we use the concrete method above to showcase the viability of our method,

there may of course be alternative ways to obtain the anchor bins and reducibility factors.

For instance, it may be interesting to a pursue a binning-free method, where a cumulative

density function is used instead of a binned histogram. Similarly, there may be more

suitable ways to ignore low-statistics phase space regions and determine anchor bins. We

leave detailed optimizations of the method for future developments.

In figure 2, we show the mixed-sample log-likelihood ratios ln pdijets(O)/pZ+jet(O) for

various jet substructure observables and model outputs. Overall, we see excellent confir-

mation that the mixed-sample log likelihood is bounded between the predicted extrema

according to the Pythia fractions. To extract these fractions in a data-driven way, we

must of course obtain these extrema from the measured log-likelihood ratios. Using the

procedure outlined above, the resulting anchor bins are shown in the right-most portion of

figure 2. Interestingly and satisfyingly, many of the individual observables and essentially

6These uncertainties, and those derived from them, should only be used to give a sense of scale on the

plots. Implementing the Operational Definition in LHC data will require careful consideration of other

sources of statistical and systematic uncertainties. For instance, using unfolded distributions may mitigate

artificial differences in the samples due to detector effects.

– 15 –



J
H
E
P
1
1
(
2
0
1
8
)
0
5
9

0.0 0.2 0.4 0.6 0.8 1.0 nconst nSD N95 τ
(β=1)
2

w m

Observable Value (Scaled)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

ln
p
d
ij
e
ts
/p

Z
+
je
t

Constituent Multiplicity nconst

Soft Drop Multiplicity nSD

Image Activity N95

N-subjettiness τ
(β=1)
2

Width w

Jet Mass m

E
x
tra

cted
L
og
-L
ikelih

o
o
d
R
atios

Observable Histogram Ratios

Pythia 8.230,
√
s = 14 TeV

R = 0.4, pT ∈ [500, 550] GeV Pythia ln
1−fdijets

1−fZ+jet

Pythia ln
fdijets

fZ+jet

Casimir-scaling maximum

(a)

PFN-ID PFN EFN EFPs CNN DNNModel Output (Translated)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

ln
p
d
ij
e
ts
/p

Z
+
je
t

PFN-ID

PFN

EFN

EFPs

CNN

DNN

E
x
tracted

L
o
g-L

ikelih
o
o
d
R
atios

Model Output Histogram Ratios

Pythia 8.230,
√
s = 14 TeV

R = 0.4, pT ∈ [500, 550] GeV

Pythia ln
1−fdijets

1−fZ+jet

Pythia ln
fdijets

fZ+jet

(b)

Figure 2. Mixture log-likelihood ratios and their extrema for (a) individual jet substructure

observables and (b) trained models, the latter of which have been translated along the horizontal axis

for clarity. The black dashed lines indicate the maximum and minimum of the mixture likelihood

ratio determined using the Pythia fractions. The gray dashed line in the observable plot indicates

the upper bound obtained for a Casimir-scaling observable from appendix A; as expected, jet mass

and width approach and remain near the gray line for much of their domain. While all individual

observables asymptote well to the lower black line, only the count observables (nconst, nSD, N95)

come close to the upper black line, indicating that gluons are more irreducible than quarks. By

contrast, the minimum and maximum for each trained model appear to achieve extremal values

close to the black limits. The solid colored lines in the lower plot indicate the behavior of the

optimal classifier, closely related to figure 1.

all of the models extract extrema consistent with the Pythia fractions. It is important

to note, though, that the Pythia fractions are not fully well-defined hadron-level con-

cepts and are shown solely to provide a conceptual and semi-quantitative guideline for the

performance of the method.
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For the substructure observables in figure 2(a), it is evident that the count observ-

ables of constituent multiplicity, soft drop multiplicity, and image activity come closest

to saturating both the upper and lower bounds. For mass and width, a clear plateau is

exhibited close to the leading logarithmic expectation for Casimir-scaling observables (see

appendix A). This difference is reflected in the fact that the count observables extract ex-

trema of the log-likelihood ratio consistent with the Pythia fractions, while the remaining

observables systematically underestimate the upper bound. One feature worth noting is

that the lower bound is accurately extracted by every observable; it is the upper bound

that is more difficult to saturate with a generic observable. This indicates that gluon jets

are evidently more irreducible than quark jets, and therefore that gluon jet distributions

are easier to extract.

For the trained model outputs in figure 2(b), we see that the mixed-sample log-

likelihood ratios are clearly bounded as expected and agree with the prediction for a well-

trained classifier. The slight deviations from the solid curve in the case of the EFPs arise

from the fact that they are trained using Fisher’s Linear Discriminant, which optimizes a

different objective function, but nonetheless the EFPs exhibit qualitatively similar behavior

to the other classifiers. Compared to the individual substructure observables, the models

more robustly saturate the upper and lower bounds of the log-likelihood ratio and demon-

strate less sensitivity to changes in the binning of the histograms. The extracted extrema

of the log-likelihood ratio based on the trained models (with the exception of the CNN)

are all consistent with one another as well as with the Pythia fractions. This agreement,

present in the variety of different models which process information in very different ways,

indicates that there is indeed a robust sense in which “quark” and “gluon”, as qualitatively

described by the parton-matched labels, are latent within the mixed samples.

Using the extracted extrema of the mixed-sample log-likelihood ratio, the reducibility

factors can be obtained by appropriate exponentiation. The quark fractions can then be

calculated according to eqs. (2.12) and (2.13). These are shown in figure 3(a) for the

individual observables and figure 3(b) for the trained models. We see that the trained

models all extract fractions largely consistent with one another and with the Pythia

fractions. The count substructure observables also extract consistent fractions, while the

shape observables exhibit Casimir-scaling behavior, making them unsuitable for identifying

mutually-irreducible quark and gluon jets. The fractions obtained from the trained models

were consistently more robust to different choices of topic extraction procedures, such as

the histogram binning. Despite having little to no handle on the details of the trained

models, we are able to obtain important constraints on their behavior and use them to

obtain quark/gluon fractions, which are evidently insensitive to these details.

As a more quantitative measure of the quality of the extracted quark fractions, the

percent error of the extracted fractions relative to the (unphysical) Pythia fractions is

shown in figures 4(a) and 4(b). The count observables and trained models agree within

several statistical uncertainties of one another and the Pythia fractions, in many cases

achieving O(1%) fidelity. Again, we caution that the Pythia fractions solely provide

a heuristic to demonstrate the performance of the method and should not be taken as

fundamental to quark and gluon jets.
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Figure 3. Extracted quark fraction values for the (a) individual observables and (b) trained models

as calculated using the log-likelihood extrema of figure 2 inserted into in eqs. (2.12) and (2.13) to

obtain the fractions.
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Figure 4. The percent error of the extracted quark fractions (see figure 3) relative to the Pythia

fractions, obtained using the (a) individual observables and (b) trained models. By this measure,

the best jet observable appears to be N95 and the best model is the linear EFP model.

4.3 Self-calibrating classifiers

With the quark fractions of the mixtures in hand, one immediate application is to use

them to calibrate the quark/gluon classifiers, as discussed in section 3.3. Since uncalibrated

classifiers can be used to obtain these fractions, this allows for self-calibrating classifiers in
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Figure 5. The ROC curves for several substructure observables and trained models using the

quark fractions estimated from the EFPs. The “Truth” corresponds to using the Pythia fractions

to obtain the ROC curve. We see good agreement between the data-driven ROC curves and the

Pythia-labeled ROC curves. Further, we see that the CWoLa-trained EFP classifier has effectively

self-calibrated itself in this way.

the CWoLa framework. This liberates the CWoLa framework from necessarily requiring

a small test set with known fractions (cf. ref. [60]). In the present picture, this ability to

self-calibrate is conceptually clear since a sample with “known” fractions is equivalent to

providing a definition of the underlying categories.

Beyond solely self-calibration of classifiers, the extracted fractions can be used to obtain

the receiver operating characteristic (ROC) curves for other trained models or substructure

observables, even those that do not themselves exhibit quark/gluon mutual irreducibility.

The extracted ROC curves of a variety of trained model and substructure observables

using the EFP-extracted quark fractions are shown in figure 5, with estimated uncertainty

bands coming from uncertainties in the extracted fractions. They are compared to the

calibrated ROC curve using the Pythia-labeled fractions, achieving very good agreement

between the two. Note that the uncertainties are smaller for worse classifiers, which is

intuitive given the limit that a perfectly-random classifier can be identified as such without

any fraction information. Overall, this concretely demonstrates that the self-calibration of

CWoLa-trained classifiers can be achieved in a purely data-driven way.

4.4 Obtaining observable distributions from extracted fractions

With the reducibility factors of the mixtures, the distributions of substructure observables

can be extracted for quark and gluon jets separately. This corresponds to a direct applica-

tion of the Operational Definition of quarks and gluons in eq. (2.10). This is similar in spirit

to the procedure implemented in refs. [52, 55] of using quark/gluon fractions estimated by
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convolving matrix elements and parton distribution functions and then solving systems of

linear equations. The key distinction is that, in our case, the fractions (and reducibility

factors) themselves are data-driven.

In figure 6, we use the reducibility factors defined by the EFP classifier to extract quark

and gluon distributions for the six individual substructure observables. We see excellent

agreement between the data-driven, operationally-defined quark and gluon distributions

and the ones specified by the Pythia fractions. Importantly, this procedure works for

any substructure observable, even ones such as jet mass and width which do not manifest

quark/gluon mutual irreducibility.

5 Conclusions

In this paper, we provided an Operational Definition of quark and gluon jets, based solely

on physical cross section measurements. We connected our definition to the existing CWoLa

and jet topics paradigms, showing how they each fit naturally into the implementation of

the definition. Taking two mixed samples, for which there is a qualitative notion that

one is more “quark-like” than the other, the Operational Definition returns a quantitive

understanding through mutually-irreducible quark and gluons distributions. Practically, we

implemented this definition by approximating the mixed-sample likelihood ratio, relating

it to the pure quark/gluon likelihood ratio, and finding its extrema to determine mixed-

sample reducibility factors. With the reducibility factors in hand, the quark fractions for

the mixed samples can be readily obtained. In a broad sense, our Operational Definition

harmonizes with the statistical picture of jet samples at colliders, where individual jets do

not carry intrinsic flavor labels and one only ever has access to mixed samples in data.

To illustrate the power of the Operational Definition, we tested it in the realistic context

of Z+jet and dijet processes. We applied our quark/gluon jet definition to twelve differ-

ent observables: six individual substructure observables, and six trained machine learning

models which distilled a huge feature space down to a single optimal observable. The six

individual observables naturally fall into two categories, count and shape observables, and

we confirmed that the count observables yield much more accurate quark fractions (rela-

tive to a Pythia baseline). With the minor exception of the CNN, the machine learning

models all did well at extracting the fractions. While the performance of the best individ-

ual observable (N95) and the best machine learning model (linear EFPs) were comparable,

the machine learning models were overall more robust to changes in histogram binning

and to the technique used for determining the reducibility factors; this in turn contributes

to the robustness of the Operational Definition. Having determined the quark fractions,

we extracted pure quark and gluon distributions for various jet substructure observables.

Crucially, this worked even for observables that do not exhibit quark/gluon mutually ir-

reducibility, as long as the observable used to extract the fractions does. Additionally, we

demonstrated that CWoLa classifiers could be self calibrated using fractions obtained from

an uncalibrated classifier, thereby removing a potential hurdle in using CWoLa in practice.

The techniques in this paper represent a novel use of classification in particle physics.

Instead of tagging quark and gluon jets, we used a CWoLa-trained deep learning classifier
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Figure 6. The distributions of the six substructure observables in the Z+jet sample (purple) and

dijet sample (pink), with the quark and gluon distributions determined from the Pythia fractions

(blue and red, respectively) and the jet topics (orange and green) using EFP-extracted reducibility

factors. We see excellent agreement between the jet topics and the Pythia-determined distributions

of quark and gluon jets.
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to approximate the full mixed-sample likelihood ratio. This is in the same spirit of recent

work on deep learning [22, 69, 74–80], where the “black box” nature of the trained model is

not of central importance to the success or understanding of the method. No longer is the

output of a neural network viewed as an arbitrary quantity used only for discrimination,

but rather as a robust approximation to the likelihood ratio, which turns out also to

be optimal for extracting categories from the data. Surprisingly, while individual quark

and gluon jets cannot be tagged perfectly, we were able to use a data-driven classifier to

extract the full quark and gluon distributions of an observable to percent-level accuracy.

This approach paves the way for fully data-driven collider physics, making use of machine

learning techniques trained directly on data while producing results insensitive to the details

of the “black box”.

We conclude by discussing potential extensions of the methods used in this paper. As

mentioned in section 3, a key concern in jet tagging is sample dependence, i.e. whether a

“quark jet” in one sample is the same as a “quark jet” in another. While the Operational

Definition sidesteps the issue of sample dependence in the case of two mixed samples, it

is natural to ask what happens with three or more mixed samples. Concretely, once the

Operational Definition is applied to two mixed jet samples, one can ask the degree to which

a third sample M is explained by the existing quark and gluon distributions. It turns out

that there is a unique and well-defined generalization of the reducibility factor, discussed

in ref. [67], that precisely captures this notion and yields a quantifiable notion of sample

dependence:

κ ≡ max
fq , fg
{fq+fg | ∃ dist. po(O) s.t. pM (O) = fqpq(O)+fgpg(O)+(1−fq−fg)po(O)}, (5.1)

where 0 ≤ fq, fg ≤ 1 and fq + fg ≤ 1. In eq. (5.1), κ is the maximum amount of M

explainable by the quark and gluon distributions, requiring minimal addition of an “other”

distribution po(O). Understanding sample dependence is a general challenge, even with

parton-shower-extracted templates, so it is gratifying that our framework naturally sug-

gests a tool to address this problem. Sample dependence can also be studied by directly

comparing the quark and gluon jet definitions provided by different pairs of jet samples

(Z+jet, dijets, γ+jet, etc.) at different transverse momenta and jet radii. We leave explo-

rations of these important ideas, as well as more detailed optimizations of the method, to

future work.

Extending this thinking, one might attempt to provide a concrete jet flavor definition

beyond the two-category case of quarks and gluons. For instance, while the difference in

radiation patterns between different-flavor light-quark jets is much smaller than between

quark and gluon jets, it may be possible to use the techniques described in this paper to

define differently-flavored quark jets. The subtle difference in radiation patterns between

different light-quark has been studied in the context of jet charge observables in ref. [17]

and in the context of machine learning in ref. [81]. To use our methods in this case

would require advances in multiple-category CWoLa and jet topics, though the conceptual

underpinnings would be the same as for the two-category case studied here. Further, one

could extend such a definition to provide well-defined jet flavor definitions for a variety of
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other boosted hadronic objects, potentially including subtle distinctions like longitudinal

versus transverse polarization of boosted W/Z bosons. More broadly, the concept of mutual

irreducibility as a means of defining categories may find additional applications in high-

energy physics due to its utility in disentangling overlapping distributions using pure phase

space signatures.
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A Theoretical exploration of Casimir- and Poisson-scaling observables

In this appendix, we explore the Operational Definition of quark and gluon jets in the

leading-logarithmic (LL) limit, focusing on two theoretically-tractable classes of jet ob-

servables: casimir-scaling and Poisson-scaling observables. Though we only work to lowest

non-trivial order, these calculations demonstrate that our framework for defining quark

and gluon jets is suitable to theoretical exploration in addition to practical experimental

implementation. In the LL limit of perturbative QCD, quarks and gluons differ in their

emission profiles only by their color charges: CF = 4/3 for quarks and CA = 3 for gluons.

Thus, in the LL limit, quarks and gluons are well-defined (at least at the parton level),

providing a simplified context to explore the Operational Definition. We find different non-

zero quark/gluon reducibility factors for Casimir-scaling and Poisson-scaling observables,

substantiating the need to use a richer space of jet substructure observables to approximate

the full likelihood ratio.

Casimir-scaling observables include common jet substructure observables, such as the

jet mass m or IRC-safe angularities [12–14, 19, 20], that are dominated at LL accuracy

by a single hard emission. Their cumulative distributions satisfy Σg(m) = Σq(m)CA/CF ,

where pi(m) = dΣi/dm. Solely using this scaling property, the quark/gluon reducibility

factors of Casimir-scaling observables are:

κCas.
qg = min

m

pq(m)

pg(m)
= min

m

dΣq

dm

CA
CF

Σ
CA/CF−1
q

dΣq

dm

=
CF
CA

min
m

Σ1−CA/CF
q =

CF
CA

, (A.1)

κCas.
gq = min

m

pg(m)

pq(m)
= min

m

CA
CF

Σ
CA/CF−1
q

dΣq

dm
dΣq

dm

=
CA
CF

min
m

ΣCA/CF−1
q = 0, (A.2)

where CA/CF > 1 and minm Σi(m) = 0 have been used to obtain the last equality. These

results are universal to all Casimir-scaling observables and are independent of the remaining

details of the observables at LL accuracy.
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Figure 7. Quark and gluon distributions at LL accuracy for (a) Casimir-scaling and (b) Poisson-

scaling observables, together with the corresponding jet topics. The reducibility of the quark

Casimir-scaling distribution and the gluon Poisson-scaling distribution are evident. While neither

of these observables individually results in mutually irreducible quarks and gluons, considering them

jointly does.

The non-zero reducibility factor in eq. (A.1) indicates that quark and gluon jets are

not mutually irreducible in the space of Casimir-scaling observables. In particular, the

quark distribution of any Casimir-scaling observable is a mixture of the (irreducible) gluon

distribution and some other distribution, as shown in figure 7(a). Note that this does not

imply that quark jets are fundamentally reducible, since this is just a property derived

from Casimir-scaling observables in the LL limit. That said, as noted at the end of sec-

tion 2.3, if eq. (A.1) were fundamental to quark and gluon jets, one could simply include

this reducibility factor in the Operational Definition.

We next consider Poisson-scaling observables, which count the number of perturbative

emissions and have qualitatively different quark-gluon reducibility factors. One example

is the soft drop multiplicity nSD [82], which counts the number of emissions restricted to

a certain phase space region. At LL, Poisson-scaling observables are distributed according

to Poissonian distributions with means CFλ for quarks and CAλ for gluons, where λ is a

constant proportional to the area of the emission plane that is counted. The quark-gluon

reducibility factors corresponding to these distributions are then:

κPois.
qg = min

n

pq(n)

pg(n)
= min

n

(CFλ)ne−CFλ

(CAλ)ne−CAλ
= e−(CF−CA)λ min

n

(
CF
CA

)n
= 0, (A.3)

κPois.
gq = min

n

pg(n)

pq(n)
= min

n

(CAλ)ne−CAλ

(CFλ)ne−CFλ
= e−(CA−CF )λ min

n

(
CA
CF

)n
= e−(CA−CF )λ, (A.4)

since CA/CF > 1 and n can take any non-negative integer value.
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Evidently, Poisson-scaling observables display the opposite behavior of Casimir-scaling

observables: the gluon distribution is a mixture of the (irreducible) quark distribution

and some other distribution, as shown in figure 7(b). Further, the reducibility factor is

not universal to all Poisson-scaling observables but rather depends exponentially on the

parameter λ. Though λ ∼ O(1) was considered in ref. [82], perturbative QCD allows for

arbitrarily large λ by counting emissions in larger and larger regions. As λ increases, the

reducibility factor falls to zero much more quickly than the overlap in the distributions

decreases, and thus quark and gluon jets rapidly approach mutual irreducibility. While

perturbative control is lost for large λ due to non-perturbative effects, considering this

limit suggests that there is no fundamental impediment to the mutual irreducibility of

quarks and gluons from the perspective of perturbative QCD, at least at LL accuracy.

From these two classes of observables, we see that enriching the feature space beyond

individual Casimir-scaling and Poisson observables to O = {m,nSD} yields κqg = κgq = 0

for the combined feature space in the LL limit. This benefit of using a rich feature space

motivates our approach of training data-driven classifiers on complete substructure infor-

mation to probe the full quark/gluon jet likelihood ratio, rather than relying on individual

specially-crafted substructure observables.

B Details of observables and machine learning models

In this appendix, we give details for the jet substructure study in section 4, describing the

observables, machine learning models, and model training used.

For the individual substructure observables, three of them use custom implementations:

constituent multiplicity nconst, image activity N95 [33] (number of pixels in a 33 × 33 jet

image containing 95% of the pT ), and jet mass m. The remaining three observables are

computed using FastJet contrib 1.033 [83]. The RecursiveTools 2.0.0-beta1 module

is used to calculate soft drop multiplicity nSD [82] with parameters β = −1, zcut = 0.005,

and θcut = 0. The Nsubjettiness 2.2.4 module is used to calculate the N -subjettiness [15,

16] observables τ
(β)
N with kT axes as recommended in ref. [84], in particular τ

(β=1)
2 and jet

width w (implemented as τ
(β=1)
1 ).

For our trained models, we use several different jet representations and machine learn-

ing architectures. In reverse order compared to table 1, they are:

• DNN : the N -subjettiness basis [84] is a phase space basis in the sense that 3K − 4

independent N -subjettiness observables map non-linearly onto K-body phase space.

We use 20-body phase space consisting of the following set of N -subjettiness basis

elements:{
τ

(1/2)
1 , τ

(1)
1 , τ

(2)
1 , τ

(1/2)
2 , τ

(1)
2 , τ

(2)
2 , . . . , τ

(1/2)
K−2 , τ

(1)
K−2, τ

(2)
K−2, τ

(1/2)
K−1 , τ

(1)
K−1

}
, (B.1)

i.e. τ
(β)
N with N ∈ {1, . . . , 19} and β ∈ {1/2, 1, 2}, except τ

(2)
19 is absent, all computed

using the Nsubjettiness 2.2.4 module of FastJet contrib 1.033. A DNN con-

sisting of three 100-unit fully-connected layers and a 2-unit softmaxed output was

trained on the N -subjettiness basis inputs.
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• CNN : the jet images approach [85] treats calorimeter deposits as pixel intensities

and represents the jet as an image. Convolutional neural networks (CNNs) are the

typical model of choice when learning from such a representation, and have been

successfully implemented for quark/gluon discrimination [39], W tagging [86], and

top tagging [87, 88]. We calculate 33×33 jet images spanning 2R×2R in the rapidity-

azimuth plane. In the language of ref. [39], we formulate “color” jet images with two

channels: the pT per pixel and the multiplicity per pixel. Images were standardized

by subtracting the mean and dividing by the per-pixel standard deviation of the

training set.

A CNN architecture similar to that used in ref. [39] was employed: three convolutional

layers with 48, 32, and 32 filters and filter sizes of 8×8, 4×4, and 4×4, respectively,

followed by a 128-unit dense layer. Maxpooling of size 2×2 was performed after each

convolutional layer with a stride length of 2. The dropout rate was taken to be 0.1

for all convolutional layers and was not used for the dense layer.

• EFPs : the Energy Flow basis [22] is a linear basis for IRC-safe observables in the sense

that any IRC-safe observable is arbitrarily well approximated by a linear combination

of Energy Flow Polynomials (EFPs). As a result of this remarkable property, linear

methods can be used for classification and regression and are highly competitive with

modern machine learning methods. The EnergyFlow 0.8.2 package [89] was used to

compute EFPs up to d ≤ 7, χ ≤ 3 with β = 0.5 using the normalized default hadronic

measure. This yields 996 EFPs in total, including the trivial constant EFP. This set

was used to train a Fisher’s Linear Discriminant model with scikit-learn [90].

• EFN, PFN, PFN-ID : various particle-level network architectures have been proposed

to take advantage of the structure of events or jets as sequences of vectors [41, 69, 91–

94]. We choose to focus on the Energy Flow Networks (EFNs) recently introduced

in ref. [94] and shown to be competitive with other particle-level models. The EFN

architecture is designed to have the properties desirable of a model that takes jet

constituents as inputs: it is able to handle variable length lists but, critically, is

manifestly symmetric under permutations of the elements in the input. The inputs

to an EFN are lists of particles, where a particle is described by its energy fraction,

rapidity, and azimuthal angle (the latter two translated to the origin according to the

E-scheme jet axis). EFNs construct an internal latent representation of the jet using

the particle-level inputs, weighting each particle’s contribution by its energy fraction

in order to ensure the IRC safety of the internal observables, and then combine the

internal jet observables using a DNN backend. The EnergyFlow package contains an

implementation of EFNs.

The EFN architecture can be generalized to learn potentially IRC-unsafe internal

observables. This variant is termed a Particle Flow Network (PFN), which can easily

incorporate additional particle features such as flavor information; see ref. [94] for a

more thorough discussion. In addition to the IRC-safe EFN, our study uses a PFN

with only kinematic inputs, and a PFN-ID with both kinematic and particle flavor (or
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ID) information. For each network, the per-particle frontend subnetwork has three

fully-connected 100-unit layers corresponding to an internal latent representation of

100 jet observables, and the per-jet backend has three fully-connected 100-unit layers

that combines the internal latent observables. The EFN, PFN, and PFN-ID networks

differ only in their inputs and whether the energy fractions are used as weights for

the internal sum over particles (for the EFN) or passed to the frontend subnetwork

(for the PFN and PFN-ID).

All of the above models (excepting the linear EFPs) were implemented and trained

using Keras [95] with the TensorFlow [96] backend. Training/validation and test datasets

were each constructed using 500,000 events for each jet sample being considered. The

training/validation dataset is further divided with 90% used for training and the remain-

ing 10% used for validation. Properties common to all networks were the use of ReLU

activations [97] for each non-output layer, a 2-unit softmaxed output layer, He-uniform ini-

tialization [98] of the model weights, the categorical crossentropy loss function, the Adam

optimization algorithm [99], a learning rate of 0.001, and a patience parameter of 10 epochs

monitoring the validation loss. Models are trained 25 times, making use of different random

weight initializations, and the best one is selected according to the maximum Area Under

the (mixed sample ROC) Curve. The hyperparameters of each model were not optimized

for either classification performance or accuracy of the ultimately extracted fractions but

rather are demonstrative of typical performance that can be achieved. Practical users of

the Operational Definition should tune the hyperparameters for their own purpose.

Finally, it should be noted that other data-driven criteria can be used to select optimal

trained models, though we do not explore this further here. One idea is that since the

regions of the ROC curve that are relevant for topic extraction are those with very low and

very high signal efficiency, in practice it may be beneficial to optimize training for these

regions directly. A method for optimizing loss-function based training by operating point

is described in ref. [100], and it would be fascinating to explore this for training better

models for topic extraction.

C Sample dependence in parton shower events

In this appendix, we do a basic study of sample dependence of Pythia-labeled quark and

gluon jets arising from the Z+jet and dijets processes. While this is largely tangential

to the main direction of the paper, it lends evidence that our case study is not far from

the limit of factorized and universal notions of “quark” and “gluon” jets. Of course, these

conclusions are limited by the fact that they come from jets generated in Pythia, which

itself relies on notions of factorization in its generation process. A study of these effects

in data would be an important addition to our understanding of sample independence and

factorization more broadly. We leave a study using our flavor definition to probe sample

dependence in a more realistic collider setting to future work.

In figure 8, we plot distributions for the six individual substructure observables, from

both the Z+jet and dijet samples, showing the distributions separately for quarks and
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Figure 8. Distributions for the six individual jet observables for Z+jet quarks (solid blue), Z+jet

gluons (solid red), dijet quarks (dashed blue), and dijet gluons (dashed red). That the quark and

gluon histograms for the two different samples are remarkably similar for this array of observables

indicates a high degree of sample independence, at least for the notion of quarks and gluons in

Pythia.
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Figure 9. Same as figure 8 but for the six trained model outputs.
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Figure 10. ROC curves for (a) the individual jet observables and (b) the different models

trained in the CWoLa paradigm to discriminate Z+jet and dijets events. These are calibrated

using Pythia truth fractions. The two best models are PFN-ID and EFPs, which are essentially

on top of each other.

gluons as labeled by the Pythia hard scattering process. Importantly, these distributions

show a high degree of sample independence: the Z+jet and dijet quarks and gluons have

very similar distributions. In figure 9, we plot the distributions of the trained model outputs

for quarks and gluons from both the dijet and Z+jet samples. Similar to the standard jet

observables in figure 8, a high degree of sample independence is observed. This is perhaps

more surprising than for the individual observables because these models have the ability to

pick up on very slight differences as part of their training. The observed amount of sample

independence is encouraging for using CWoLa and jet topics with complicated models.

For completeness, we also show ROC curves for each of the observables and trained

models in figure 10, calibrated using the Pythia fractions. Specifically, we use the Pythia-

labeled quark fractions of the Z+jet and dijet samples to calibrate the classifier ROC curve

via eqs. (3.6) and (3.5). In figure 10(a), we show ROC curves for each individual observable.

In figure 10(b), we show ROC curves for each of the trained models.
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