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Numerical approach for unstructured quantum
key distribution
Patrick J. Coles1, Eric M. Metodiev1 & Norbert Lütkenhaus1

Quantum key distribution (QKD) allows for communication with security guaranteed by

quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a

given protocol. Analytical formulas are known for protocols with symmetries, since symmetry

simplifies the analysis. However, experimental imperfections break symmetries, hence the

effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting

question whether (intentionally) asymmetric protocols could outperform symmetric ones.

Here we develop a robust numerical approach for calculating the key rate for arbitrary

discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured’

protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate

calculation to the dual optimization problem, which markedly reduces the number of

parameters and hence the calculation time. We illustrate our method by investigating some

unstructured protocols for which the key rate was previously unknown.
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Q
uantum key distribution (QKD) will play an important
role in quantum-safe cryptography, that is, cryptography
that addresses the emerging threat of quantum

computers1. Since its original proposal2,3, QKD has developed
significantly over the past three decades4,5, both in theory and
implementation. Indeed, QKD is now a commercial technology,
with the prospect of global QKD networks on the horizon6,7.

The main theoretical problem in QKD is to calculate how
much secret key can be distributed by a given protocol. A crucial
practical issue is that the QKD protocols that are easiest to
implement with existing optical technology do not necessarily
coincide with the protocols that are easiest to analyse theoreti-
cally4. Currently, calculating the secret key output of a protocol is
typically extremely technical, and hence only performed by skilled
experts. Furthermore, each new protocol idea requires a new
calculation, tailored to that protocol. Ultimately, the technical
nature of these calculations combined with the lack of universal
tools limits the pace at which new QKD protocols can be
discovered and analysed. Here we address this problem by
developing a robust, user-friendly framework for calculating the
secret key output, with the hope of bringing such calculations
‘to the masses’.

The secret key output is typically quantified by the key rate,
which refers to the number of bits of secret key established
divided by the number of distributed quantum systems.
Operationally, this corresponds to the question of how much
privacy amplification Alice and Bob must apply to transform
their raw key into the final secure key. Analytical simplifications
of the key rate calculation can be made for some special protocols
that have a high degree of symmetry8. Examples of such
symmetric protocols, where the signal states have a group-
theoretic structure, include the BB84 (ref. 3) and six-state
protocols9. Indeed the key rate is known for these protocols.
However, in practice, lack of symmetry is the rule rather than the
exception. That is, even if experimentalists try to implement a
symmetric protocol, experimental imperfections tend to break
symmetries10. Furthermore, it is sometimes desirable due to
optical hardware issues to implement asymmetric protocols, for
example, as in ref. 11.

We refer to general QKD protocols involving signal states or
measurement choices that lack symmetry as ‘unstructured’
protocols. Some recent work has made progress in bounding
the key rate for special kinds of unstructured protocols, such as
four-state protocols in refs 12,13 and qubit protocols in ref. 14.
Still, there is no general method for computing tight bounds
on the key rate for arbitrary unstructured protocols. Yet, these
are the protocols that are most relevant to experimental
implementations.

This motivates our present work, in which we develop an
efficient, numerical approach to calculating key rates. Our
ultimate aim is to develop a computer program, where Alice
and Bob input a description of their protocol (for example, their
signal states, measurement devices, sifting procedure and key
map) and their experimental observations, and the computer
outputs the key rate for their protocol. This program would allow
for any protocol, including those that lack structure.

At the technical level, the key rate problem is an optimization
problem, since one must minimize the well-known entropic
formula for the key rate15, over all states rAB that satisfy Alice’s
and Bob’s experimental data. The main challenge here is that this
optimization problem is unreliable and inefficient. In this work,
we give a novel insight that transforming to the dual problem
(for example, see ref. 16) resolves these issues, hence paving the
way for automated key rate calculations.

Specifically, the unreliable (or unphysical) aspect of the primal
problem is that it is a minimization, hence the output will in

general be an upper bound on the key rate. But one is typically
more interested in reliable lower bounds, that is, physically
achievable key rates. Transforming to the dual problem allows
one to formulate the problem as a maximization, and hence
approach the key rate from below. Therefore, every number
outputted from our computer program represents an achievable
asymptotic key rate, even if the computer did not reach the global
maximum.

The inefficient aspect of the primal problem is that the number
of parameters grows as d2

Ad2
B for a state rAB with dA¼ dim HAð Þ

and dB¼ dim HBð Þ. For example, if dA¼ dB¼ 10, the number of
parameters that one would have to optimize over is 10,000. In
contrast, in the dual problem, the number of parameters is equal
to the number of experimental constraints that Alice and Bob
choose to impose. For example, in the generalization of the BB84
protocol to arbitrary dimensions17,18, Alice and Bob typically
consider two constraints, their error rates in the two mutually-
unbiased bases (MUBs). So, for this protocol, we have reduced the
number of parameters to something that is constant in
dimension. We, therefore, believe that our approach (of solving
the dual problem) is ideally suited to efficiently calculate key rates
in high dimensions.

We have written a MATLAB program to implement our key
rate calculations. To illustrate the validity of our program, we
show (Fig. 1) that it exactly reproduces the known theoretical
dependence of the key rate on error rate, for both the BB84 and
six-state protocols.

But ultimately the strength of our approach is its ability
to handle unstructured protocols. We demonstrate this by
investigating some unstructured protocols for which the key
rates were not previously known. For example, we study a general
class of protocols where Alice and Bob measure n MUBs, with
2rnrdþ 1, in dimension d. Also, we investigate the B92
protocol19, which involves two signal states whose inner product
is arbitrary. Our key rates are higher than known analytical
lower bounds20,21 for B92. Finally, we argue that our approach
typically gives markedly higher key rates than those obtained
from an analytical approach based on the entropic uncertainty
relation22,23.

We focus on asymptotic key rates in this work. Nevertheless,
the optimization problem that we solve is also at the heart of
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Figure 1 | Key rate for two well-known QKD protocols. Here we compare

our numerics (from Theorem 1) with the theoretical curves. The results of

our numerical optimization for the BB84 and six-state protocols are

respectively shown as red and blue dots. The known theoretical curves for

these protocols are also shown as black dashed lines. The dots should be

viewed as reliable lower bounds on the key rate, but in this case they

happen to be perfectly tight, coinciding with the theoretical curves.
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finite-key analysis, for example, see refs 24,25. We, therefore,
hope to extend our approach to the finite-key scenario in future
efforts. We remark that finite-size effects generally reduce the key
rate below its asymptotic value.

In what follows, we first present our main result: a
reformulation of the key rate optimization problem in such a
way that it is easily computable. We then outline our general
framework for treating a broad range of protocols. Finally,
we illustrate our approach with various examples.

Results
Setup of the problem. Consider a general entanglement-based
QKD protocol involving finite-dimensional quantum systems A
and B that are respectively received by Alice and Bob. Note
that prepare-and-measure QKD protocols can be recast as
entanglement-based protocols, as discussed below. For simplicity
of presentation, we consider protocols where Alice’s raw key is
derived from a measurement on her system, possibly after some
post-selection corresponding to a public announcement with a
binary outcome, ‘pass’ or ‘fail’. However, our approach can easily
be extended to more general protocols.

Let ZA (ZB) denote the measurement that Alice (Bob) performs
on system A (B) to derive the raw key. Suppose they use one-way
direct reconciliation for the classical post-processing and that
their error correction is optimal (that is, leaks out the minimum
number of bits), then the asymptotic key rate is given by the
Devetak–Winter formula15:

K ¼ H ZA Ejð Þ�H ZA ZBjð Þ: ð1Þ
In equation (1), H(X|Y):¼H(rXY)�H(rY) is the conditional von
Neumann entropy, with H sð Þ:¼�Tr s log2s

� �
, and

rZAZB
¼
X

j;k

Tr Zj
A � Zk

B

� �
rAB

h i
jj i jh j � kj i kh j; ð2Þ

rZAE ¼
X

j

jj i jh j � TrA Zj
A � 1

� �
rAE

h i
: ð3Þ

Here rABE is the tripartite density operator shared by Alice, Bob
and Eve (and it may be the state after some post-selection
procedure, see our general framework below). Also, fZj

Ag and
fZk

Bg are the sets of positive operator valued measure (POVM)
elements associated with Alice’s and Bob’s key-generating
measurements. In what follows we refer to fZj

Ag as the key-
map POVM.

In the previous paragraph and in what follows, we assume that
the state shared by Alice, Bob and Eve has an i.i.d. (independent,
identically distributed) structure, and hence it makes sense to
discuss the state rABE associated with a single round of quantum
communication. To avoid confusion, we emphasize that our
approach is ‘unstructured’ in the sense of lacking structure for a
given round of quantum communication, but we do impose the
i.i.d. structure that relates one round to other rounds. This i.i.d.
structure corresponds to Eve doing a so-called collective attack.
However, the security of our derived asymptotic key rate also
holds against the most general attacks (coherent attacks) if one
imposes that the protocol involves a random permutation of
the rounds (a symmetrization step) such that the de Finetti
theorem26,27 or the post-selection technique28 applies.

Typically, Alice’s and Bob’s shared density operator rAB is
unknown to them. A standard part of QKD protocols is for Alice
and Bob to gather data through local measurements, and in a
procedure known as parameter estimation, they use this data to
constrain the form of rAB. The measurements used for this
purpose can, in general, be described by bounded Hermitian
operators Gi, with the set of such operators denoted by ~G ¼ Gif g.

From their data, Alice and Bob determine the average value of
each of these measurements:

~g ¼ gif g; with gi :¼ Gih i ¼ Tr rABGið Þ; ð4Þ
and this gives a set of experimental constraints:

C ¼ Tr rABGið Þ ¼ gif g: ð5Þ
We denote the set of density operators that are consistent with
these constraints as:

C ¼ rAB 2 PAB : C holdsf g ð6Þ
where PAB denotes the set of positive semidefinite operators on
HAB, and an additional constraint 1h i¼ 1 is assumed to be added
to the set C to enforce normalization.

Because Alice and Bob typically do not perform full
tomography on the state, C includes many density operators,
and hence the term H(ZA|E) in equation (1) is unknown. To
evaluate the key rate, Alice and Bob must consider the most
pessimistic of scenarios where H(ZA|E) takes on its smallest
possible value that is consistent with their data. This is a
constrained optimization problem, given by

K ¼ min
rAB2C

H ZA Ejð Þ�H ZA ZBjð Þ½ � ð7Þ

where Eve’s system E can be assumed to purify rAB since it gives
Eve the most information. Here the number of parameters in
the optimization is (dAdB)2, corresponding to the number of
parameters in a positive semidefinite operator on HAB. We refer
to equation (7) as the primal problem.

Main result. Our main result is a reformulation of the
optimization problem in equation (7).

Theorem 1: The solution of the minimization problem in
equation (7) is lower bounded by the following maximization
problem:

K � Y
ln 2
�H ZA ZBjð Þ ð8Þ

where

Y :¼ max
~l

�
X

j

Zj
AR ~l
� �

Zj
A

�����
������~l �~g

 !
; ð9Þ

and

R ~l
� �

:¼ exp � 1�~l �~G
� �

: ð10Þ

In equation (9), the optimization is over all vectors~l¼ {li}, where
the li are arbitrary real numbers and the cardinality of~l is equal
to that of ~G. Also, kMk denotes the supremum norm of M, which
is the maximum eigenvalue of M when M is positive semidefinite,
as in equation (9).

The proof of Theorem 1 is given in the Methods section.
It relies on the duality of convex optimization problems, as well as
some entropic identities that allow us to simplify the dual
problem. Note that the term H(ZA|ZB) in equation (8) is pulled
outside of the optimization since Alice and Bob can compute it
directly from their data.

The cardinalities of the sets~l and ~G are the same. This means
that the number of parameters li that one must optimize over, to
solve equation (9), is equal to the number of experimental
constraints that Alice and Bob have. (More precisely this is the
number of independent constraints, since one can eliminate
constraints that carry redundant information.) This has the
potential to be significantly less than the number of parameters
in the primal problem. Indeed, we demonstrate below that
equation (9) can be easily solved using MATLAB on a personal
computer for a variety of interesting QKD protocols.
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Formulating constraints. For a given protocol, how does one
decide which constraints to include in the set C? Consider the
following remarks. First, adding in more constraints will never
decrease the key rate obtained from our optimization. This
follows since adding a new constraint gives an additional li to
maximize over, while setting this new li to zero recovers the old
problem. Second, coarse-graining constraints, that is, merging
two constraints hGii¼ gi and hGji¼ gj into a single constraint
hGiþGji¼ giþ gj, will never increase the key rate obtained from
our optimization. This follows since merging two constraints
means that two li’s are merged into a single li, thus restricting the
optimization. Hence, to obtain the highest key rates, one should
input all of one’s refined knowledge that is available into our
optimization. On the other hand, coarse graining reduces the
number of constraints and thus may help to simplify the
optimization problem, possibly at the cost of a reduced key rate.

One’s refined knowledge is captured as follows. In a general
entanglement-based protocol, Alice measures a POVM (whose
elements may be non-commuting, for example, if she randomly
measures one of two MUBs), which we denote as GA¼ {GA,i}.
Likewise Bob’s corresponding POVM is GB¼ {GB,i}. Hence,
through public discussion, Alice and Bob obtain knowledge of
expectation values of the form

Tr rAB GA;i � GB;j
� �� �

¼ gij; for each i; j: ð11Þ
These constraints form the set C in equation (5). We remark that
it is common in the QKD field to express correlations in terms of
average error rates rather than in terms of the joint probability
distribution in equation (11). This is an example of the coarse
graining that we mentioned above. For simplicity of presentation,
we will do this sort of coarse graining for some protocols that we
investigate below, although equation (11) represents our general
framework for constructing C.

Framework for prepare and measure. While our approach is
stated in the entanglement-based scenario, let us note how it
applies to prepare-and-measure protocols. Consider a prepare-
and-measure protocol involving a set of N signal states {|fji},
which Alice sends with probabilities {pj}. It is well-known that
prepare-and-measure protocols can be recast as entanglement-
based protocols using the source-replacement scheme (see,
for example, refs 4,8,29). Namely, one forms the entangled state:

cAA0j i ¼
X

j

ffiffiffiffi
pj

p
jj ijfji: ð12Þ

One imagines that Alice keeps system A, while system A0 is sent
over an insecure quantum channel E to Bob, resulting in

rAB ¼ I � Eð Þ cAA0j i cAA0h jð Þ: ð13Þ
The numerical optimization approach described above can then
be applied to the state rAB in equation (13). However, in addition
to the constraints obtained from Alice’s and Bob’s measurement
results, we must add in further constraints to account for the
special form of rAB. In particular, note that the partial trace over
B gives

rA ¼
X

j;k

ffiffiffiffiffiffiffiffi
pjpk

p
fkh jfji jj i kh j: ð14Þ

The form of rA, which is closely related to Gram matrix,
depends on the inner products between the signal states, which
(we assume) Alice knows. Suppose {Oi} is a set of tomographically
complete observables on system A, then one can add in the
calculated expectation values {oi} of these observables into the set
of constraints. That is, add

Oi � 1h i ¼ oi; for each i ð15Þ

to the set C in equation (5). This will capture Alice’s knowledge of
her reduced density operator.

Framework for decoy states. In decoy-state QKD30, which aims
to combat photon-number splitting attacks, Alice prepares
coherent states of various intensities and then randomizes their
phases before sending them to Bob. Our framework can handle
decoy states simply by allowing for additional signal states
to be added to the set {|fji} in equation (12). For example,
to treat decoy protocols with partial phase randomization31,
one can consider signal states that are bipartite (on the signal
mode S and the reference mode R) of the form

fjkl




 E
¼ aje

i yk þflð Þ

 E
S
� aje

iyk


 �

R
ð16Þ

where aj is the amplitude of the coherent state associated with
the jth intensity setting, yk is the kth phase used in phase
randomization, and fl is the phase Alice uses to encode her
information (for example, for generating key). Decoy protocols
with complete phase randomization are also treatable in our
framework, namely, by adding in a signal state for each photon-
number basis state (up to a cutoff), and treating multi-photon
signals as orthogonal states (so-called ‘tagged states’) since Eve
can perfectly distinguish them.

Framework for MDI QKD. A special kind of prepare-and-
measure protocol is measurement-device-independent (MDI)
QKD32. In MDI QKD, Alice prepares states {|fji} with
probabilities {pj} and sends them to Charlie, and Bob does the
same procedure as Alice (Fig. 2). Charlie typically does a Bell-
basis measurement, however the security proof does not assume
this particular form of measurement. Charlie announces the
outcome of his measurement, which we denote by the classical
register M. Our framework for treating MDI QKD considers the
tripartite state rABM, where A and B, respectively, are Alice’s and
Bob’s systems in the source-replacement scheme, playing the
same role as system A in equation (12) (see Supplementary Note
1 for elaboration). For our numerics, we impose the constraint
that the marginal rAB¼rA#rB is fixed (since Eve cannot access
A and B), with rA and rB given by the form in equation (14).
We enforce this constraint using the same approach as used in
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Figure 2 | Key rate for MDI QKD with the BB84 signal states. The inset

shows the basic idea of MDI QKD: Alice and Bob each prepare a signal

state and send it to an untrusted node, which performs an (untrusted)

Bell-basis measurement and announces the outcome. Our numerics

(circular dots) essentially reproduce the known theoretical dependence of

the key rate on the error rate (dashed curve), which is the same expression

as that given in (20). See Supplementary Note 1 for elaboration.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11712

4 NATURE COMMUNICATIONS | 7:11712 | DOI: 10.1038/ncomms11712 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


equation (15) to fix rA for prepare-and-measure protocols.
The only other constraints we impose are the usual correlation
constraints, that is, a description of the joint probability
distribution for the standard bases on A, B and M, of the form

Tr rABM jj i jh j � kj i kh j � mj i mh jð Þ½ � ¼ gjkm: ð17Þ

Framework for post-selection and announcements. In general,
a QKD protocol may involve post-selection. As an example,
if Alice sends photons to Bob over a lossy channel, then they may
post-select on rounds in which Bob detects a photon. As noted
above, for simplicity we consider protocols where the post-
selection involves a binary announcement, and Alice and Bob
keep (discard) rounds when ‘pass’ (‘fail’) is announced. Let G
be the completely positive linear map corresponding to the
post-selection. The action of G �ð Þ¼G �ð ÞGy is given by a single
Kraus operator G, corresponding to the ‘pass’ announcement.

The key rate formula (1) should be applied to the post-selected
state:

~rAB ¼ G rABð Þ=ppass ð18Þ
where ppass¼ Tr G rABð Þð Þ is the probability for passing the
post-selection filter. We remark that since G is given by a single
Kraus operator, it maps pure states to pure states, and hence
taking Eve’s system to purify the post-selected state ~rAB is
equivalent to taking it to purify rAB. Hence applying the key rate
formula to ~rAB does not give Eve access to any more than she
already has, and hence does not introduce any looseness into our
bound. Future extension of our work to more general maps G will
need to carefully account for how Eve’s system is affected by G,
so as not to lose key rate from this proof technique.

The only issue is that Alice’s and Bob’s experimental
constraints C in equation (5) are still in terms of state rAB.
To solve for the key rate, one must transform these constraints
into constraints on ~rAB. For the special case where G has
an inverse G� 1 that is also completely positive, one can simply
insert the identity channel I¼G� 1G into the expression
Tr rABGið Þ¼ Tr G� 1G rABð ÞGi

� �
. Using cyclic permutation under

the trace, we transform equation (5) into a set of constraints
on ~rAB,

~C ¼ Tr ~rAB
~Gi

� �
¼ ~gi

� 
: ð19Þ

where the ~Gi ¼ G� 1
� �w

Gið Þ are Hermitian operators, with
G� 1� �w

being the adjoint of G� 1, and ~gi¼gi=ppass. Note that
ppass is determined experimentally and hence the ~gi are known to
Alice and Bob. More generally, we provide a method for
obtaining ~C for arbitrary G, as described in Supplementary
Note 2.

We remark that public announcements can be treated with a
simple extension of our post-selection framework. While our
framework directly applies to announcements with only two
outcomes corresponding to ‘pass’ or ‘fail’ (as discussed above),
more general announcements can be treated by adding classical
registers that store the announcement outcomes. Our treatment
of MDI QKD is an example of this approach (Fig. 2 and
Supplementary Note 1). Additional examples that could be
treated in this way are protocols with two-way classical
communication33 such as advantage distillation.

Outline of examples. We now illustrate our numerical approach
for lower bounding the key rate by considering some well-known
protocols. First, we consider the BB84 and six-state protocols
(Fig. 1), MDI QKD with BB84 states (Fig. 2), and the generalized
BB84 protocol involving two MUBs in any dimension (Fig. 3). In
each case, the dependence of the key rate on error rate is known,

and we show that our numerical approach exactly reproduces
these theoretical dependences. After considering these structured
protocols, we move on to using our numerical optimization for its
intended purpose: studying unstructured protocols. The fact that
our bound is tight for the structured protocols mentioned above
gives reason to suspect that we will get strong bounds in the
unstructured case. We investigate below a protocol involving n
MUBs, a protocol involving bases with arbitrary angle between
them, and the B92 protocol.

BB84 example. Consider an entanglement-based version of the
BB84 protocol3, where Alice and Bob each receive a qubit and
measure either in the Z¼ {|0i, |1i} or X¼ {|þi, |�i} basis,
where �j i¼ 0j i � 1j ið Þ=

ffiffiffi
2
p

. For all protocols that we discuss,
we assume perfect sifting efficiency, which can be accomplished
asymptotically via asymmetric basis choice34. Let us suppose that
Alice and Bob each use their Z basis to generate key. For
simplicity, suppose they observe that their error rates in the Z and
X bases are identical and equal to Q, then it is known (see,
for example, ref. 4) that the key rate is given by

K ¼ 1� 2h Qð Þ ð20Þ
where h pð Þ :¼ � p log2p� 1� pð Þlog2 1� pð Þ is the binary entropy.

To reproduce this result using our numerics, we write the
optimization problem as follows:

Key-map POVM : ZA ¼ 0j i 0h j; 1j i 1h jf g ð21Þ

Constraints : 1h i ¼ 1 ð22Þ

EXh i ¼ Q ð23Þ

EZh i ¼ Q ð24Þ
where the error operators are defined as

EZ :¼ 0j i 0h j � 1j i 1h j þ 1j i 1h j � 0j i 0h j ð25Þ

EX :¼ þj i þh j � �j i �h jþ �j i �h j � þj i þh j: ð26Þ
Equations (21)–(24) highlight the fact that, as far as the
optimization in equation (9) is concerned, a QKD protocol is
defined by the POVM elements used for generating the key and
the experimental constraints used for ‘parameter estimation’
(and also the post-selection map G, but this is trivial for the ideal
BB84 protocol). Once these things are specified, the protocol is
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shows the theoretical key rate as solid curves, and the result of our

numerical optimization as circular dots, for dA¼ dB¼ d, with d¼6 (blue),

d¼8 (red), and d¼ 10 (black). Again, the dots should be viewed as reliable

lower bounds, but in this case they are perfectly tight.
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defined and the key rate is determined. Numerically solving the
problem defined in equations (21)–(24) for several values of Q
leads to the red dots in Fig. 1, which agree perfectly with the
theory curve.

Six state example. Now consider an entanglement-based version
of the six-state protocol, where Alice and Bob each measure one
of three MUBs (X, Y or Z) on their qubit. Suppose that Alice and
Bob observe that their error rates in all three bases are identical,
hEXi¼ hEYi¼ hEZi¼Q, where

EY :¼ yþj i yþh j � yþj i yþh jþ y�j i y�h j � y�j i y�h j; ð27Þ

with y�j i¼ 0j i � i 1j ið Þ=
ffiffiffi
2
p

. (Our definition of EY reflects the
fact that the standard Bell state is correlated in Z and X but
anti-correlated in Y.) To reproduce the known key rate9,21,
we write the optimization problem as:

Key-map POVM : ZA ¼ 0j i 0h j; 1j i 1h jf g ð28Þ

Constraints : 1h i ¼ 1 ð29Þ

EXYh i ¼ Q ð30Þ

EZh i ¼ Q; ð31Þ
where EXY :¼ (EXþEY)/2 quantifies the average error for X and
Y. Note that the constraint hEXYi¼Q is obtained by coarse
graining the individual error rates. In theory, one can get a
stronger bound on the key rate by splitting up this constraint
into hEXi¼Q and hEYi¼Q. However, our numerics show that
this does not improve the key rate, and the constraints in
equation (29)–(31) are enough to reproduce the theory curve.
Indeed, numerically solving the problem in equation (28)–(31)
leads to the blue dots in Fig. 1, which agree with the theory curve.

Two MUBs in higher dimensions example. A distinct advantage
of our approach of solving equation (9) instead of the primal
problem equation (7) is that we can easily perform the optimi-
zation in higher dimensions, where the number of parameters in
equation (7) would be quite large. To illustrate this, we consider a
generalization of BB84 to arbitrary dimension, where Alice and
Bob measure generalized versions of the X and Z bases. This
protocol has been implemented, for example, in ref. 18 using
orbital angular momentum. Taking Z as the standard basis {|ji},
Alice’s X basis can be taken as the Fourier transform {F|ji}, where

F ¼
X

j;k

o� jkffiffiffi
d
p jj i kh j ð32Þ

is the Fourier matrix, with o¼ e2pi/d, and for simplicity we
choose Alice’s and Bob’s dimension to be equal: dA¼ dB¼ d.
Bob’s X basis is set to {F*|ji}, where F* denotes the conjugate of F
in the standard basis.

Suppose that Alice and Bob observe that their error rates in Z
and X are identical. The theoretical key rates8,17 for the cases
d¼ 6, 8, 10 are shown as dashed curves in Fig. 3, while our
numerics are shown as circular dots. Clearly there is perfect
agreement with the theory.

For our numerics we employ the same constraints as used for
BB84 in equation (21)–(24), but generalized to higher d. We again
emphasize that the calculation of Y here is very efficient and can
easily handle higher dimension. This is because the number of
parameters one is optimizing over is independent of dimension—
equal to the number of constraints, which in this case is 3. This is
in sharp contrast to the primal problem in equation (7), where the
number of parameters is d4, which would be 10,000 for d¼ 10.

n MUBs example. A simple generalization of the above
protocols is to consider a set of n MUBs in dimension d.
For example, in prime power dimensions there exist explicit
constructions for sets of n MUBs with 2pnpdþ 1 (ref. 35).
Consisder a protocol where we fix the set of n MUBs, and in each
round, Alice and Bob each measure their d dimensional system in
one basis chosen from this set. For general n the symmetry group
is not known for this protocol8, so one can consider it an
unstructured protocol. Indeed, only for the special cases n¼ 2
and n¼ dþ 1 do we have analytical formulas for the key rate8.
Nevertheless it is straightforward to apply our numerics to this
protocol for any n. Our results are shown in Fig. 4 for d¼ 5.
To obtain these curves we only need three constraints, which are
analogous to equation (29)–(31), but generalized such that hEXYi
is replaced by the average error rate in all n� 1 bases, excluding
the basis used for key generation (the Z basis).

Interestingly, Fig. 4 shows that just adding one basis, going
from n¼ 2 to n¼ 3, gives a large jump in the key rate, whereas
there are diminishing returns as one adds more bases. This can be
seen in the inset of Fig. 4, which plots the error tolerance (that is,
the value of Q for which the key rate goes to zero) as a function of
n. We have seen similar behaviour for other d besides d¼ 5. After
completion of this work, an analytical formula for n¼ 3 was
discovered36, and we have verified that it agrees perfectly with our
numerics.

In Supplementary Note 3, we analytically prove the following.
Proposition 2: Our numerical results are perfectly tight for the

protocols discussed in Figs 1,3 and 4. That is, for these protocols,
our optimization exactly reproduces the primal optimization
(equation (7)).

Note that this observation implies that key rate for protocols
involving n MUBs (as in Fig. 4) is now known; namely it is given
by our numerical optimization.

Arbitrary angle between bases example. While MUBs are a
special case, our approach can handle arbitrary angles between
the different measurements or signal states. For example,
we consider a simple qubit protocol37 where Alice and Bob each
measure either the Z or W basis, where W is rotated by an angle y
away from the ideal X basis. This protocol provides the
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opportunity to compare our numerical approach to an analytical
approach based on the entropic uncertainty principle, introduced
in refs 22,23. This is the state-of-the-art method for lower
bounding the key rate. So for comparison, Fig. 5 plots the
bound obtained from the entropic uncertainty principle for bases
Z and W.

We apply our numerical approach with the constraints:

Constraints : 1h i ¼ 1 ð33Þ

sW � sWh i ¼ 1� 2Q ð34Þ

sZ � sZh i ¼ 1� 2Q ð35Þ

sZ � sWh i ¼ sin yh i 1� 2Qð Þ ð36Þ

sW � sZh i ¼ sin yð Þ 1� 2Qð Þ; ð37Þ
where sZ and sW are the Pauli operators associated with the
Z and W bases. Figure 5 plots a hierarchy of lower bounds
obtained from gradually adding in more of the constraints in
equation (33)–(37). As the plot shows, we already beat the
entropic uncertainty principle with only the first two constraints.
Furthermore, adding in all these constraints gives a markedly
higher bound, showing the uncertainty principle gives highly
pessimistic key rates for this protocol. From an experimental
perspective, Fig. 5 is reassuring, in that small variations in y away
from the ideal BB84 protocol (y¼ 0) have essentially no effect on
the key rate. Figure 5 also highlights the fact that our approach
allows us to systematically study the effect on the key rate of Alice
and Bob using more or less of their data. In this example, we see
that it is useful to keep data that one will usually discard in the
sifting step of the protocol.

B92 example. Next we consider the B92 protocol19, which is a
simple, practical and unstructured protocol. It nicely illustrates
our framework because it is inherently a prepare-and-measure
protocol and it involves post-selection. In the protocol, Alice
sends one of two non-orthogonal states {|f0i, |f1i} to Bob.
Since the Bloch-sphere angle y between the two states is arbitrary,
with hf0|f1i¼ cos(y/2), the protocol is unstructured. Bob
randomly (with equal probability) measures either in basis

B0 ¼ f f0j i; jf0ig or basis B1 ¼ f f1j i; jf1ig, where hf0jf0i¼
hf1jf1i¼0. If Bob gets outcome jf0i or jf1i, then he publicly
announces ‘pass’, and he assigns a bit value of 1 or 0, respectively,
to his key. Otherwise, Bob announces ‘fail’ and they discard the
round.

A detailed description of the constraints we employed for B92
can be found in Supplementary Note 4. Our numerical results are
shown in Fig. 6. Figure 6 shows that the optimal angle for
maximizing key rate depends on the depolarizing noise p,
although small deviations ±5� from the optimal angle do not
affect the key rate much.

Our results give higher key rates for B92 than refs 20 and 21,
which respectively predicted positive key rates for pp0.034 and
pp0.048, while we predict it for pp0.053. On the other hand, ref.
38 directly solved the primal problem equation (7) for B92 by
brute-force numerics, and achieves positive key rate for pp0.065.
We have verified that the gap between our results and those of
ref. 38 is due to the looseness of our usage of the Golden-
Thompson inequality (equation (60) in the Methods section).
However, ref. 38 only showed a plot for pX0.046, noting that the
numerical optimization for the primal problem did not converge
for smaller p values. This highlights a benefit of going to the dual
problem, in that we have no trouble with obtaining the full
dependence on p.

Discussion
In conclusion, we address one of the main outstanding problems
in QKD theory: how to calculate key rates for arbitrary protocols.
Our main result is a numerical method for lower-bounding key
rates that is both efficient and reliable. It is reliable in the sense
that, by reformulating the problem as a maximization, every
solution that one’s computer outputs is an achievable key rate.
It is efficient in the sense that we have reduced the number of
parameters in the optimization problem from d2

Ad2
B down to the

number of experimental constraints, which in some cases is
independent of dimension.

The motivation for our work is twofold. First, experimental
imperfections tend to break symmetries, so theoretical techniques
that exploit symmetries do not apply. Hence, there is no general
method currently available for calculating the effect of imperfec-
tions on the key rate. Second, it is interesting to ask whether
protocols that are intentionally designed to lack symmetry might
outperform the well-known symmetric protocols. Such a question
cannot be posed without a method for calculating key rates for
unstructured protocols. Just to give an example where the key rate
is currently unknown, we plan to apply our approach to protocolsX 
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where a small, discrete set of coherent states are the signal states
and information is encoded in the phase39.

We envision that our method could be a standard tool for
QKD researchers. In future work we hope to extend our approach
to the finite-key scenario. Indeed, the optimization problem we
solve is closely related to one appearing in finite-key analysis24.

Methods
Outline. Here we prove our main result, Theorem 1. Our proof relies on
several technical tools. First is the notion of the duality of optimization, that is,
transforming the primal problem to its dual problem. Second, we employ several
entropic identities to simplify the dual problem. Third, we use a recent, important
result from ref. 40 that solves a relative entropy optimization problem.

For readability, we prove Theorem 1 here for the special case where the key map
POVM ZA¼fZj

Ag is a projective measurement, that is, where the Zj
A are projectors

(of arbitrary rank). We postpone the proof for arbitrary POVMs to Supplementary
Note 5.

The primal problem. First we rewrite equation (7) as:

K ¼ min
rAB2C

H ZA Ejð Þ
� �

�H ZA ZBjð Þ; ð38Þ

noting that the second term in equation (38), H(ZA|ZB), will be determined
experimentally and hence can be pulled out of the optimization. We remark that,
simply for illustration purposes we used Fano’s inequality to upper-bound
H(ZA|ZB) in our figures; however, in practice H(ZA|ZB) would be directly calculated
from the data.

Since we only need to optimize the first term, we redefine the primal problem as

a :¼ min
rAB2C

H ZA Ejð Þ; ð39Þ

and note that we can take E to be a purifying system of rAB, since that gives Eve the
most information. Next we use a result for tripartite pure states rABE¼ cj i ch jABE
from refs 41,42 that relates the conditional entropy to the relative entropy:

H ZA Ejð Þ ¼ D rAB

X
j

Zj
ArABZj

A

�����
 !

ð40Þ

where the relative entropy is defined by

D s tkð Þ :¼ Tr s log2s
� �

�Tr s log2t
� �

: ð41Þ

We remark that the joint convexity of the relative entropy implies that the
right-hand side of equation (40) is a convex function of rAB. (See ref. 43 for an
alternative proof of convexity.) Because of this, and the fact that the constraints in
equation (5) are linear functions of rAB, equation (39) is a convex optimization
problem16.

It is interesting to point out the connection to coherence44. For some set of
orthogonal projectors �¼ �jf g that decompose the identity,

P
j �j¼1, the

coherence (sometimes called relative entropy of coherence) of state r is
defined as44:

F r;�ð Þ ¼ D r
X

j

�jr�j

�����
 !

: ð42Þ

Rewriting the primal problem in terms of coherence gives

a ¼ min
rAB2C

F rAB;ZAð Þ: ð43Þ

Hence, we make the connection that calculating the secret key rate is related to
optimizing the coherence.

This observation is important since the coherence is a continuous function of r
(Supplementary Note 6). This allows us to argue in Supplementary Note 6 that our
optimization problem satisfies the strong duality criterion16, which means that the
solution of the dual problem is precisely equal to that of primal problem.

The dual problem. Now we transform to the dual problem. Due to a pesky factor
of ln(2), it is useful to rescale the primal problem as follows:

â :¼ a ln 2ð Þ ¼ min
rAB2C

F̂ rAB;ZAð Þ ð44Þ

where, henceforth, we generally use the notation M̂ : ¼M ln 2ð Þ, for any quantity
M. The dual problem16 of equation (44) is given by the following unconstrained
optimization:

b̂ ¼ max
~l

min
rAB2C

L rAB;
~l

� �
ð45Þ

where P is the set of positive semidefinite operators:

P ¼ rAB 2 HdA dB : rABX0f g: ð46Þ

Here the Lagrangian is given by

L rAB;
~l

� �
:¼ F̂ rAB;ZAð Þþ

X
i

li Tr rABGið Þ� gi½ �; ð47Þ

where the ~l¼ {li} are Lagrange multipliers. Strong duality implies that

b̂ ¼ â: ð48Þ
In what follows, we go through several steps to simplify the dual problem. It

helps to first state the following lemma from refs 42,45.
Lemma 3: For any r and �¼ �jf g, the coherence can be rewritten as

F r;�ð Þ ¼ min
o2D

D r
X

j

�jo�j

�����
 !

ð49Þ

where D is the set of density operators.
Hence, we have

F̂ rAB;ZAð Þ ¼ min
sAB2D

D̂ rAB ZA sABð Þkð Þ; ð50Þ

where we define the quantum channel ZA whose action on an operator O is
given by

ZA Oð Þ :¼
X

j

Zj
AOZj

A: ð51Þ

Next, we interchange the two minimizations in (45)

min
rAB2P

min
sAB2D

f rAB;sAB;~l
� �

¼ min
sAB2D

min
rAB2P

f rAB;sAB;~l
� �

ð52Þ

where

f rAB; sAB;~l
� �

:¼ D̂ rAB ZA sABð Þkð Þþ
X

i

li Gih i� gið Þ: ð53Þ

Ref. 40 solved a relative entropy optimization problem, a special case of which is
our problem:

min
rAB2P

f rAB; sAB;~l
� �

: ð54Þ

From ref. 40, the unique solution of equation (54) is

r�AB ¼ exp � 1�~l �~Gþ ln ZA sABð Þð Þ
� �

: ð55Þ

Inserting equation (55) into equation (53) gives the optimal value:

f r�AB; sAB;~l
� �

¼ �Tr r�AB

� �
�
X

i

ligi: ð56Þ

In summary, the dual problem becomes

b̂ ¼ max
~l

Z ~l
� �

; ð57Þ

with

Z ~l
� �

:¼ � max
sAB2D

Tr r�AB

� �
þ~l �~g

h i
: ð58Þ

A lower bound. We can obtain a simple lower bound on Z(~l) as follows.
The Golden–Thompson inequality states that

Tr exp AþBð Þð Þ 	 Tr exp Að Þexp Bð Þð Þ: ð59Þ
Applying this inequality gives:

Tr r�AB

� �
	 Tr R ~l

� �
exp lnZA sABð Þð Þ

� �
ð60Þ

¼ Tr R ~l
� �
ZA sABð Þ

� �
ð61Þ

¼ Tr ZA R ~l
� �� �

sAB

� �
; ð62Þ

where Rð~lÞ ¼ expð� 1�~l �~GÞ was defined in equation (10). Next, note that

max
sAB2D

Tr ZA R ~l
� �� �

sAB

� �
¼ ZA R ~l

� �� ���� ���: ð63Þ

Hence, we arrive at our final result

b̂ � max
~l
� ZA R ~l

� �� ���� ����~l �~gh i
; ð64Þ

where the right-hand side is denoted as Y in Theorem 1.

Data availability. The authors declare that the data supporting the findings in this
study are available within the article.
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